
A visual solver for fair division:

Adding state-of-the-art-algorithms

Yongteng Lei
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2025

Abstract

The divisible fair division problem, also known as cake-cutting, has been an active

research topic across several fields for nearly 70 years. Its core task is to allocate a

divisible resource, often referred to as a cake, to n agents in a fair manner according

to their preference values, typically based on the widely accepted fairness criterion of

envy-freeness. The cases involving two or three agents have been elegantly solved by

the Cut & Choose and the Selfridge-Conway Method, and these have been integrated

into Fair Slice, a visual fair division tool primarily used for educational purposes.

Despite decades of intensive research, the problem of fair division for four or more

agents remains challenging. Recently, Hollender and Rubinstein [12] proposed an

ε-envy-free fair division algorithm that fairly divides a cake into four pieces in the

four-agent scenario within O(log3(1/ε)), using only three cuts, allowing agents to

divide the cake within a small ε factor without envy. The goal of this project was to

thoroughly explore the Hollender-Rubinstein algorithm, translate it from theory into

practical code, integrate it into Fair Slice, and maintain its user-friendly and educational

characteristics. This goal was ultimately achieved, though with some limitations, such

as the need to further enhance the robustness of the implementation and the algorithm’s

reliance on users having specific preferences for successful operation. Additionally, the

gap between implementation and theory has been discussed, and deeper research and

more comprehensive testing are identified as directions for future work.

i

Research Ethics Approval

This project was planned in accordance with the Informatics Research Ethics policy. It

did not involve any aspects that required approval from the Informatics Research Ethics

committee.

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Yongteng Lei)

ii

Acknowledgements

I would like to give my sincerest gratitude to my supervisor, Aris Filos-Ratsikas. Two

years ago, I read his paper Fair Division of Indivisible Goods: Recent Progress and

Open Questions, and entered the world of Fair Division. It was a great honour to do this

work under his supervision.

I am grateful for the book Economics and Computation: An Introduction to Algo-

rithmic Game Theory, Computational Social Choice, and Fair Division, which provided

me with extensive knowledge about Fair Division and helped me realise that I am not

alone in my interest in this field. It is such a fascinating field. This book deepened my

understanding and reinforced my passion for Fair Division.

Thanks to my friends, Yuwei Zhang, Rutong Li, Shuyuan Pang, they are my family.

Thank you to my dearest beloved brother from Pakistan - Dera Malik Nawaz Walasar,

Asif Nawaz (Yes! he asked). We once spent an entire night working together on my

project, and it was a memorable experience. We also shared time together during our

ordinary days, supporting each other along the way.

My deepest gratitude to my mum, who was always there for me during my most

difficult times. I am also profoundly thankful to my dad for his unwavering and

unconditional support.

My heartfelt thanks to my dearest grandma.

Thanks to my own love for Fair Division, or I would say Fair Allocation, which has

made these months of work enjoyable and fulfilling.

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Main Contributions . 2

1.3 Dissertation Roadmap . 3

2 Background 5
2.1 Preliminaries of Cake-Cutting . 5

2.1.1 Problem Formal Definition 5

2.1.2 Valuation Functions . 5

2.1.3 Cake-Cutting Protocols . 7

2.1.4 Fairness Criteria . 8

2.2 Overview of Divisible Fair Division Algorithms 8

2.3 Overview of Hollender-Rubinstein Algorithm 9

2.3.1 Core Idea . 10

2.3.2 Algorithm . 11

2.4 Fair Slice . 12

3 Code Implementation 13
3.1 Original Valuation Functions . 13

3.2 Preprocessing . 14

3.3 Binary Search . 17

3.4 Equipartition . 18

3.5 Conditions Handling . 20

3.5.1 Condition A . 20

3.5.2 Condition B . 23

3.6 Wrap Up . 26

iv

4 Discussion 30
4.1 Code Implementation Review . 30

4.1.1 Agents Preferences . 30

4.1.2 Computation Precision and Tolerance 31

4.1.3 Potential Implementation Errors and Decisions 32

4.2 Platform Integration . 33

4.3 Limitations . 36

4.4 Future Work . 37

5 Conclusions 38

A Complex Valuation Functions 43
A.1 Complexity of Piecewise Linear valuation functions 43

A.2 More Complex Forms of Valuation Functions 43

B Code Implementation 45
B.1 Original Evaluation Functions . 45

B.2 Normalisation and De-normalisation 46

B.3 Final Modified Valuation Functions 47

B.4 Binary Search . 51

B.5 Find Envy-Free Allocation . 52

B.6 Condition B . 54

C Discussion 60
C.1 Code Coverage Report . 61

C.2 Interactive Course . 62

v

Chapter 1

Introduction

1.1 Motivation

“Justice is blind, and fairness requires anonymous rules of arbitration.” [14] The devel-

opment of fair division algorithms, which promote fairness and trust by removing bias

and ensuring that the distribution process is both transparent and equitable, has been

an important topic of research in the fields of mathematics, economics, politics, and

society from diverse perspectives for over 70 years [14, 16].

Fair division algorithms have broad significant applications in real-world scenarios.

Some practical fields are in real estate projects [27], power distribution [4], and land

redistribution [21, 22]. In the international context, the Adjusted Winner algorithm,

proposed by Brams and Taylor [7, 8], played an important role in the Panama dis-

pute [18]. This marked the first instance that fair division algorithms demonstrated

significant potential in real-world problem solving. Furthermore, the application of

these algorithms in resolving divorce settlements [17], managing shift allocations [15],

and facilitating equitable rent division [10, 24] highlights their practical relevance and

effectiveness in addressing everyday life challenges. Therefore, it is a necessary topic

to study the application of fair division algorithms.

After several decades of intensive research, scholars have made substantial progress

in this field, yet they continue to encounter numerous challenges and uncertainties.

In scenarios involving a small number of agents, these algorithms can efficiently and

elegantly resolve disputes. For instance, the “Cut & Choose” protocol, a simple and

effective method, ensures fairness in two-agent situations by having one agent cut and

the other choose her preferred portion. Conversely, the Selfridge-Conway [7] method

only requires several cuts to achieve a fair division, by ensuring each party receives at

1

Chapter 1. Introduction 2

least two pieces. However, when dealing with four or more agents, due to the complexity

of the algorithm, the necessity for potential infinite queries [2], or the impracticality of

results, the cake may be divided into million pieces [23], making such scenarios still

disconnected from practical real-life applications or unrealistic.

Recently, Hollender and Rubinstein [12] proposed an implementable approximate

envy-free framework with considerable complexity, featuring the advantageous property

that with only n− 1 cut points, agents can achieve a continuous allocation of cakes

in O(log3(1
ε
)), where ε is the factor of approximation. Moreover, thanks to the work

of Ernst [11], undertaken as his MSc project at the School of Informatics, University

of Edinburgh, during the academic year 2022/23, Fair Slice emerges as the first fully

realised visual fair division tool. This tool effectively brings scenarios involving two

and three agents to public attention, serving as a valuable educational resource. In

addition, its well-designed, interactive educational pages enhance its utility as an

effective presentation tool for educational purposes. Building on these inspiring work,

the aim of this project is to explore fair allocation algorithms for scenarios involving

four or more agents. Specifically, this project focuses on the work of Hollender and

Rubinstein [12], converting it into practical code, and integrating it into Fair Slice. This

extension enhances the functionality and responsibility of Fair Slice, enabling it to

address more realistic scenarios and provide visual educational presentations for more

complex situations.

1.2 Main Contributions

While Ernst [11]’s work primarily addresses interface design and user experience,

this project focus more on the exploration and analysis of fair division algorithm

proposed by Hollender and Rubinstein [12], particularly emphasising its potential

implementation. As the four-agent fair division algorithm remains mysterious, it brings

significant complexity and challenges to its implementation. Furthermore, integrating

the algorithm with interactive educational pages is also a key focus of this work. The

following are the main contributions of this project:

• The core codebase, originally written in TypeScript and implementing the Cut &

Choose algorithm, has been refactored in Python to enhance maintainability and

extensibility, laying a solid foundation for the future development of this project.

• The Hollender-Rubinstein algorithm has been thoroughly explored and analysed,

Chapter 1. Introduction 3

with its core concepts, implementation details, challenges, and solutions clearly

highlighted. This work serves as a bridge between theory and practice, trans-

forming the algorithm from a theoretical framework into practical, executable

code.

• Furthermore, the Hollender-Rubinstein algorithm has been successfully integrated

into the existing Fair Slice platform, extending its functionality to accommodate

four-agent scenarios. An interactive course, consistent with the platform’s in-

terface, has also been developed, establishing Fair Slice as a valuable tool for

educational presentations and demonstrations.

1.3 Dissertation Roadmap

The structure of this dissertation is as follows:

Chapter 2 lays the foundational background necessary for understanding fair divi-

sion. It begins with the preliminaries of cake-cutting, including the problem definition,

evaluation equations, and fairness criteria. This is followed by a historical overview

of fair division, along with the challenges and opportunities encountered in four-agent

scenarios. Subsequently, the chapter introduces the Hollender-Rubinstein algorithm,

offering a broad overview to grasp the core concepts before proceeding to a detailed

analysis. The chapter then concludes with a brief introduction to Fair Slice, outlining

its core features, key highlights, and how our work can integrate with and extends the

platform.

Chapter 3 presents the Hollender-Rubinstein algorithm in a more technical man-

ner, transitioning from theory to practice and from problem identification to solution

development. It offers a comprehensive perspective on the analysis and explanation of

the algorithm, including the transplanting of the original evaluation functions from the

TypeScript codebase, the rationale behind the modified evaluation functions, and the

necessary adaptations required to align them with the Fair Slice platform.

Chapter 4 begins with a discussion of the performance of the implemented algo-

rithm and the challenges it faces. It examines the impact of various factors on the

algorithm from three perspectives: the influence of agent preferences on the satisfaction

of invariant, the challenges posed by floating-point computation due to precision and

tolerance issues, and the consequences of potential implementation errors and decisions.

Subsequently, the results of the integration with Fair Slice are presented. Finally, the

Chapter 1. Introduction 4

chapter addresses the project’s limitations and outlines future work.

Chapter 5 concludes the key information of the project and gives a review of the

entire dissertation.

Chapter 2

Background

2.1 Preliminaries of Cake-Cutting

2.1.1 Problem Formal Definition

This project is devoted to investigating algorithms for the fair division of divisible
resources among four agents, commonly referred to as cake-cutting. The cake is

metaphorically represented by a real number unit interval, X = [0,1], which is sufficient

to represent any infinitely divisible resource that can be divided among n agents. The

purpose of the task is to cut the cake X into n portions, X1,X2, · · · ,Xn, out of n agents,

a1,a2, · · · ,an, and assign these portions to the agents in a fair way, for 1 ≤ i < j ≤ n,

each portion X j satisfies X j ⊆ X and we have X =
⋃n

j=1 X j and Xi ∩X j = /0. Ideally,

only n−1 cuts would be needed to obtain continuous pieces of cake portions, which is

a significant property we desire. However, this is not necessary. Each portion Xi ⊆ X

can be considered as a collection of disjoint, thus more than n pieces could be made.

2.1.2 Valuation Functions

Fair division algorithms barely know anything about agents and primarily operate based

on their expressed preferences through valuation functions. For 1 ≤ i ≤ n, the valuation

function vi maps agent ai’s preference for each piece of cake X to some real number

in [0,1]. Each agent is evaluated independently, knowing only their own valuation for

each piece of cake according to the corresponding function. Additionally, for any subset

of X = [0,1], which can be evaluated differently by the same agent, such a cake is

considered heterogeneous. More specifically, when all agents ai evaluate the entire cake

identically, the cake is deemed homogeneous, a simplified cake-cutting problem.

5

Chapter 2. Background 6

Valuation functions, as a tool for representing agent preferences, are assumed to

have the following four properties in this project:

1. Normalisation: For 1 ≤ i ≤ n, we have vi(X) = 1 and vi(/0) = 0.

2. Nonnegativity[19]1: For all portions X j ⊆ X , we have vi(X j)≥ 0.

3. Additivity: For all portions X j,Xk ⊆ X with X j ∩Xk = /0, we have

vi(X j ∪Xk) = vi(X j)+ vi(Xk).

4. Divisibility2: For all portion X j ⊆ X and there is a sub-portion Xk ⊆ X j, we can

always find a real number α, such that

vi(Xk) = α · vi(X j).

These properties hold for different forms of evaluation functions. Figure 2.1 shows

the two forms of evaluation equations involved in this project, piecewise constant and

piecewise linear. See Ernst’s [11] work for more design details. In fact, piecewise

constant functions can be considered as a special case of piecewise linear, where all

values are fixed constants within the smallest granularity intervals of each evaluation.

Therefore, for 1 ≤ i ≤ n, the evaluation vi(X j) of agent ai for a portion X j = [α,β],

where α,β ∈ [0,1], is the sum of the areas of the rectangles covered by X j, that is,

∑
β

α area of rectangles in [α,β]. In contrast, piecewise linear valuation functions repre-

sent a more general case. Here, agent ai evaluates vi(X j) for the portion X j as the sum

of the areas of the right trapezoids within [α,β], we say, ∑
β

α area of the right trapezium.

(a) Piecewise constant valuation (b) Piecewise linear valuation

Figure 2.1: Two relevant evaluation function forms [11]

1Using Positivity: For all portions X j ⊆ X , we have vi(X j) > 0, which seems more reasonable, as
users typically do not evaluate an empty portion. However, when we allow users to assign 0 utility to a
non-empty portion, this is where nonnegativity plays a role.

2Additivity and Divisibility imply that the cake can be cut arbitrarily without loss of value.

Chapter 2. Background 7

The two forms of the evaluation function described above, which are utilised in this

project, demonstrate that while we can efficiently calculate an agent’s preference for any

portion, the more complex piecewise linear functions introduce greater computational

complexity. This complexity arises from the intricacies in determining cut points and

the non-linear changes within intervals. Thanks to Ernst’s work [11], we now have a

high-precision method for identifying cut points that meet the desired conditions. Based

on his work, this method, using decimal.Decimal from the Python library to ensure

precision up to 15 decimal places, will be enhanced and utilised throughout this project,

with detailed information provided in the Appendix A.1.

2.1.3 Cake-Cutting Protocols

From the computational perspective, cake-cutting protocols provide algorithmic solu-

tions to the two core questions of fair division: whether a division exists that satisfies a

given fairness criterion, and how to achieve such a division. A cake-cutting protocol is

a set of rules that instructs agents what to do next and describes an interactive process

to be followed to divide a cake X among n agents [20]. Although the protocol does not

know anything about the agents, including their evaluation equations, it asks the agent

for the value of a particular piece of cake at a specific step and recommends the next

action based on the response. Robertson and Webb [19] suggest that such interactions

between the agent and the protocol can be categorised into two types of requests:

For 1 ≤ i ≤ n, agents ai and all possible portions X j ⊆ X = [0,1]

1. Evaluation evali(X j): Requests agent ai to return the value of X j based on her

evaluation function, that is, vi(X j).

2. Cut cuti(X j,x,α): Given a portion X j, a cut point x ∈ X j, and a target value α,

requests agent ai to return another cut point 0 ≤ x ≤ y ≤ 1 such that vi([x,y]) = α,

if possible3.

This approach, known as the Robertson-Webb query model, will continue to serve as

the core of the project, particularly when using binary search to find eligible cut points.

Refer to Section 3.3 for implementation details.

3If no such cut point exists, the treatment may vary. In the released version of this project, the
rightmost side of the portion is returned. During testing, the programme terminates.

Chapter 2. Background 8

2.1.4 Fairness Criteria

In the cake-cutting problem, various fairness criteria are discussed, with envy-freeness

being the most well-known and directly relevant to this project. An envy-free division

is a division where no agent believes that another agent has received a more valuable

portion than their own, meaning no agent envies another. Formally, for every agent i

receiving a portion Xi, where 1 ≤ i, j ≤ n and i ̸= j, we have

vi(Xi)≥ vi(X j).

While the concept of envy-freeness is intuitive, it represents a stringent fairness criterion.

Despite decades of research, no general solution has been discovered for scenarios

involving even more than three agents. Thus, a relaxation of envy-freeness, known as

ε-envy-freeness, was introduced by Brânzei and Nisan [9]. This accepted approximation

of fair division permits the cake-cutting problem to be addressed more efficiently in

scenarios of greater complexity. A division is ε-envy-free if, ε is a small approximation

factor, every agent i receiving a portion Xi , where 1 ≤ i, j ≤ n and i ̸= j, satisfies

vi(Xi)≥ vi(X j)− ε.

Notably, the problem for two and three agents has been elegantly addressed by two

well-known cake-cutting protocols: Cut & Choose and the Selfridge-Conway Method.

These methods have been integrated into Fair Slice by Ernst [11], providing an in-

teractive visualisation that enhances user understanding of envy-free divisions. This

work explores the promising algorithm recently proposed by Hollender and Rubinstein

[12] for resulting continuous ε-envy-free fair division among four people. It translates

this protocol into practical code that extends Fair Slice’s functionality to four agents

scenarios and utilises the same interactive educational interface to visually explain this

advanced algorithm. The goal is to enable both practical application and educational

demonstration use of the four agents cake-cutting problem in Fair Slice.

2.2 Overview of Divisible Fair Division Algorithms

The work of Steinhaus [26] and the collaborative research he conducted with his

colleagues [13] in the 1940s is considered the foundation of the cake-cutting problem,

which has since sparked decades of extensive research. In the early stages of the

problem, the Cut & Choose method was proposed as an elegant solution for two-person

Chapter 2. Background 9

scenarios. Approximately twenty years later, in 1960s, the Selfridge-Conway Method [7,

19] offered a solution for three-agent scenarios, employing a straightforward mechanism

built upon a complex underlying concept. Since then, research has concentrated on

more complex scenarios involving more than three agents, an area that remains both

challenging and actively pursued, with no comprehensive solution yet identified.

Although Steinhaus [25] has proven that an envy-free cake division always exists for

any number of agents, the method to achieve such a division remains elusive, leading to

the introduction of various constraints in researches from a computational perspective.

In tackling the four agents scenario, an obvious idea is to extend the principles of the

Selfridge-Conway Method to develop a suitable protocol for this case. Brams, Taylor,

and Zwicker [5] responded this in 1997 by proposing a protocol that combines Austin’s

two-agent moving-knife protocol [1] with the ideas from the Selfridge-Conway Method.

Although their protocol guarantees envy-freeness, it sacrifices finite boundedness,

thereby limiting its practicality. Moreover, the finite envy-free cake-cutting algorithm

designed by Brams and Taylor [6, 7] for n agents becomes impractical with a growing

number of agents, as its complexity escalates, often requiring an intolerable amount of

runtime, which makes it unsuitable for fast and practical resource allocation. Until 2016,

a breakthrough finite bounded, envy-free cake-cutting protocol for four agents with a

maximum 203 cuts, was proposed by Aziz and Mackenzie [3]. It implies that the number

of decisions needed for envy-free division is predictable before the protocol is executed.

This protocol was subsequently extended to n agents scenarios [2], which typically

require O
(

nnnnnn)
runtime. All of the above protocols suffer from two drawbacks in

real-world applications, the potentially infinite dividing of the cake and the intolerable

running time. Recent work by Hollender and Rubinstein [12] proposed a promising

framework to address this problem by resulting continuous envy-free fair division within

a certain time complexity.

2.3 Overview of Hollender-Rubinstein Algorithm

The Hollender-Rubinstein Algorithm produces a continuous ε-envy-free (ε-EF) fair

division with a time complexity of O(log3(1
ε
)). This ensures that the cake is divided

into n pieces among n agents using n− 1 cut points. Specifically, for n = 4, the cut

points are denoted as (l,m,r), where 0 ≤ l ≤ m ≤ r ≤ 1. In addition to the assumptions

outlined in Section 2.1.2, the operation of the algorithm relies on the following three

additional considerations:

Chapter 2. Background 10

1. Lipschitz-continuous with Lipschitz constant L: For all points 0 ≤ a′ ≤ a ≤
b ≤ b′ ≤ 1 and the evaluation function vi for agent i, the following holds:

|vi(a,b)− vi(a′,b′)| ≤ L(|a−a′|+ |b−b′|).

Without loss of generality, we assume this function is 1-Lipschitz-coutinuous

where L = 1, Therefore, we have

|vi(a,b)− vi(a′,b′)| ≤ (|a−a′|+ |b−b′|).

2. Monotonicity: The value vi(a,b) is at least vi(a′,b′), that is vi(a,b)≤ vi(a′,b′),

whenever the interval [a,b] is the subset of the interval [a′,b′].

3. Hungriness: The value vi(a,b) is strictly less than vi(a′,b′), that is vi(a,b) <

vi(a′,b′), whenever the interval [a,b] is the true subset the interval [a′,b′].

2.3.1 Core Idea

The core idea of the Hollender-Rubinstein Algorithm is to maintain an invariant through-

out its execution, parameterised by α∈ [0,1]. The algorithm begins with an equipartition

by Agent 1, and as α increases monotonically, it follows a continuous path that consis-

tently holds the invariant. This path is guaranteed to eventually terminate, resulting in

an ε-EF allocation. The desired invariant is one of the following two conditions:

• Condition A: Agent 1 is indifferent among its top three favourite pieces, and the

remaining piece is (weakly) preferred by at least two of the other three agents.

• Condition B: Agent 1 is indifferent between its two favourite pieces, and each of

the remaining two pieces is (weakly) preferred by at least two of the other three

agents.

Equipartition refers to the division of a cake into four pieces, each with equal value

from the perspective of Agent 1, denoted as α=
4 . It has been proved that such a unique

equipartition always exists and can be efficiently determined [12]. This equipartition

satisfies Condition A, which serves as the initial step in the Hollender-Rubinstein

Algorithm. The methodology for achieving equipartition is detailed in Section 3.4,

while the formal definitions of Conditions A and B are provided in Section 3.5.

Chapter 2. Background 11

2.3.2 Algorithm

The Hollender-Rubinstein Algorithm is based on an intuitive idea and straightforward

procedures. However, each of these steps involves significant computational effort and

extensive searching behind the scenes, with the detailed implementations provided in

Chapter 3. The workflow of the algorithm is shown in Figure 2.2 and the pseudocode is

as follows.

Algorithm 1 Hollender-Rubinstein Algorithm
1: Compute the unique equipartition of the cake according to Agent 1.

2: IF this equipartition yields an envy-free division THEN
3: Return the allocation.

4: ELSE
5: Set α := α=

4 and ᾱ := 1.

6: ENDIF
7: REPEAT
8: Let α := (α+ ᾱ)/2.

9: IF Condition A or B holds at value α THEN
10: Set α := α.

11: ELSE
12: Set ᾱ := α.

13: ENDIF
14: UNTIL |ᾱ−α| ≤ ε4/12

15: Return a division of the cake that satisfies Condition A or B at value α.

Figure 2.2: Algorithm Workflow

Chapter 2. Background 12

2.4 Fair Slice

Fair Slice is a visual resource partitioning tool developed by Ernst [11] as his MSc

project for the 2022/2023 academic year. As the first of its kind, it demonstrates how

fair division algorithms can be applied to divisible resources, such as time and simplified

land, optionally using a cake as a metaphor, see Figure 2.3.

(a) Resource Setup with Meaning (Three-Shift System) (b) Resource Setup without Meaning

Figure 2.3: Multi-Purpose Resource Setup

The project effectively integrates the Cut & Choose and Selfridge-Conway Method

to support 2 to 3 participants scenarios with a highly engaging visual interface, allowing

users to naturally and effectively express their preferences for resources, as discussed

in Section 2.1.2. Additionally, Its clear explanations of algorithmic results, combined

with its interactive course, make it one of the most effective tools for illustrating fair

division concepts, while also providing practical references for real-world resource

allocation scenarios. For more outstanding features and design concepts, please refer to

the original work [11].

(a) Result explanation: Evaluation View (b) Result explanation: Perceived Portion View

Figure 2.4: Two of the Three Result Representations of the Algorithm.

The aim of this project is to extend the capabilities of Fair Slice to accommodate a

four-agent scenario and to integrate the Hollender-Rubinstein Algorithm, thereby bring-

ing the four-agent envy-free cake-cutting problem into the public attention. Additionally,

the project aims to maintain the interactive educational and presentation interface that

offers users an intuitive understanding of the algorithm’s mechanics, supporting both

practical applications and academic research.

Chapter 3

Code Implementation

3.1 Original Valuation Functions

Thanks to Ernst’s [11] work, the original valuation functions vi can be interpreted as the

area of a triangle or right trapezium within the desired interval, and have been effectively

implemented in TypeScript. One of the primary tasks of this project is to port the original

TypeScript codebase to Python1 (see Appendix B.1 for the corresponding Python code,

get value for interval). Function get value for interval accepts a range from [0,∞],

just as Fair Slice originally did. However, it is important to note that the original

valuation functions have values in the range [0,∞], which conflicts with the 1-Lipschitz

assumption. To address this issue, we normalise the original valuation functions,

bringing their values into the range [0,1] to align with the algorithm’s requirements (see

Appendix B.2).

def _v(segments: List[Segment], a: Decimal , b: Decimal , cake_size:

Decimal) -> Decimal:

whole_cake_value = get_value_for_interval(segments , to_decimal

(0), cake_size)

v = norm(get_value_for_interval(segments , a, b),

whole_cake_value)

return v

Listing 3.1: Original Valuation Functions

1As mentioned earlier, the algorithm relies heavily on floating-point computations, where small
differences in precision are generally negligible. However, since we are consistently working with
values in the range [0,1], particularly when computing modified evaluation functions, the complexity
of expressions and integration of results can significantly impact the final outcome. Based on our
experiments, we use Python’s decimal.Decimal with 15 decimal places of precision to ensure accuracy
while maintaining acceptable performance.

13

Chapter 3. Code Implementation 14

3.2 Preprocessing

The Hollender-Rubinstein Algorithm operates based on monotone 1-Lipschitz valu-

ations. However, to ensure that the assumptions outlined in Section 2.3 are satisfied,

it is necessary to perform on-the-fly adjustments during the algorithm’s execution to

transform the original valuation functions vi into ε-strongly-hungry valuations. As a

result, any ε-envy-free allocation derived from the modified valuation functions will

correspond to a 12ε-envy-free allocation with respect to the original valuations. Thus,

although this process is termed “preprocessing” these adjustments occur during the

computation.

Based on Hollender and Rubinstein’s work [12], we modify the original 1-Lipschitz

valuation functions vi to v
′
i(a,b) =

vi(a,b)
2 + ε|b− a|, making v

′
i both 1-Lipschitz con-

tinuous and ε-strongly-hungry. Given that vi ∈ [0,1], it is obvious that v
′
i ∈ [0,1] as

well.

def _v_prime(segments: List[Segment], epsilon: Decimal , a: Decimal ,

b: Decimal , cake_size: Decimal) -> Decimal:

v = _v(segments , a, b, cake_size) / 2 + epsilon * abs(b - a)

assert 0 <= v <= 1, f"prime value should in [0, 1], got {v}"

return v

Listing 3.2: Modified v
′
i valuation functions

We then construct v
′′

by performing a piecewise linear interpolation of v′ over the grid

{0,δ,2δ, . . . ,1−δ,1}2. More specifically, for any 0 ≤ a ≤ b ≤ 1, consider consecutive

multiples of δ, denoted a and ā, where a and ā satisfy a ≤ a ≤ ā, and similarly b and b̄

satisfy b ≤ b ≤ b̄. Next, we modify the evaluation functions according to the conditions:

v
′′
i =


(ā−a)−(b−b)

δ
· v′

i(a,b)+
b−b

δ
· v′

i(a, b̄)+
a−a

δ
· v′

i(ā,b) if ā−a ≥ b−b
(b−b)−(ā−a)

δ
· v′

i(ā, b̄)+
ā−a

δ
· v′

i(a, b̄)+
b̄−b

δ
· v′

i(ā,b) if ā−a ≤ b−b

In this process, given an a ∈ [0,1], finding its consecutive multiples in the δ grid is

an important task. Take Listing 3.3 as an example to find a. First, we validate the input

a. Then, we handle specific boundary cases: for example, the function should return 0

when a < δ or a = 0, and 1−δ when a = 1. Additionally, if a is already a multiple of δ,

the function should return the next smaller multiple of δ rather than a itself. To account

for the precision limitations of floating-point calculations, we introduce a tolerance that

2In this project, we let δ := ε.

Chapter 3. Code Implementation 15

is at least as small as δ to detect this scenario. A similar function that computes ā is

provided Listing B.3 in Appendix B.3.

def underline(x, delta , tolerance=Decimal("1e-10")) -> Decimal:

assert 0 <= x <= 1, f"got {x}, expect it between [0, 1]"

if x < delta or x == 0:

return to_decimal(0)

if x == 1:

return x - delta

Check if x is an exact multiple of delta ,

considering floating point precision issues

if abs(x % delta) < tolerance or abs(delta - (x % delta)) <

tolerance:

v = (x / delta - 1).to_integral_value(rounding="ROUND_FLOOR"

) * delta

else:

v = (x / delta).to_integral_value(rounding="ROUND_FLOOR") *

delta

return max(v, to_decimal(0))

Listing 3.3: Finding the largest multiple in the δ-grid that is less than or equal to x.

The complete code for calculating v
′′

is provided in Listing B.4. Since Fair Slice

allows users to evaluate multiple segments, where the number of segments ranges from

[1, ∞], these segments must be treated as a whole cake. This requires a transformation

from [1, ∞] to [0,1], see Listing 3.4. The code for the reverse transformation is also

provided in Listing B.5.

def scale_to_unit(a: Decimal , cake_size: Decimal) -> Decimal:

assert (

to_decimal(0) <= a <= to_decimal(cake_size)

), f"a must be greater than or equal to 0 and less than

cake_size: {cake_size}, got {a}"

if cake_size == 1:

return to_decimal(a)

elif cake_size == 0:

return to_decimal(0)

return to_decimal(a) / to_decimal(cake_size)

Listing 3.4: Coverting segments range from [1,∞] to [0,1].

Chapter 3. Code Implementation 16

Thus, we then use the transformed values to interpolate v
′
i for computing v

′′
i , while

the original segment values are used to compute vi and v
′
i. This approach maximises the

utilisation of the original codebase with minimal modifications, ensuring the accuracy

of the implementation.

def _v_double_prime(segments: List[Segment], delta: Decimal , a:

Decimal , b: Decimal , cake_size: Decimal) -> Decimal:

a_unit = to_decimal(scale_to_unit(a, cake_size))

b_unit = to_decimal(scale_to_unit(b, cake_size))

delta = to_decimal(delta)

Get the transformed grid points around a and b

a_underline_unit = underline(a_unit , delta)

a_overline_unit = overline(a_unit , delta)

b_underline_unit = underline(b_unit , delta)

b_overline_unit = overline(b_unit , delta)

Using original segments range to calculate v and v’ values

a_underline = scale_back_from_unit(a_underline_unit , cake_size)

a_overline = scale_back_from_unit(a_overline_unit , cake_size)

b_underline = scale_back_from_unit(b_underline_unit , cake_size)

b_overline = scale_back_from_unit(b_overline_unit , cake_size)

v_prime_a_under_b_over = _v_prime(segments , delta , a_underline ,

b_overline , cake_size)

v_prime_a_over_b_under = _v_prime(segments , delta , a_overline ,

b_underline , cake_size)

if a_overline_unit - a_unit >= b_unit - b_underline_unit:

Calculate v’’ value using transformed values

...

Listing 3.5: Part of final modified v
′′
i valuation functions: using transformed segment

values while retaining original segment values for calculating vi and v
′
i.

Similar to the calculation of vi, there is a wrapper function, get double prime for interval,

designed to calculate the value of v
′′
i for any given interval and set of segments, see

Listing B.6.

Chapter 3. Code Implementation 17

3.3 Binary Search

The efficiency of the Hollender-Rubinstein Algorithm lies in its innovative design,

which guarantees a path that maintains the invariant and ultimately results in three cuts,

producing an ε-EF division. Due to the monotonicity of the evaluation functions, the

value of the cake strictly increases as a cut moves from left to right. This property

enables the algorithm to leverage binary search to accelerate both the Evaluation and

Cut requests, as the cake is inherently ordered from left to right. In the δ-grid, it jsut

requires at most log(1/ε) steps to determine the interval where the cut point for a given

value must lie.

The binary search utilises the classical approach of comparing the middle value to

the target value within an internally ordered cake. This process involves determining

which part of the set the target lies in and then recursively continuing the search within

that subset, either to find the target value or to conclude that it does not exist3. The

process is illustrated in Figure 3.1. Notably, the critical value is the v
′′
i of a piece of cake,

and calculating this value requires recording the original starting point of this piece.

Additionally, due to the potential precision issues inherent in floating-point calculation,

we consider the target value found when the critical searched value is sufficiently close

to the target within a specified tolerance.

Figure 3.1: Binary Search

As illustrated in Figure 3.1, there are two binary search alternatives tailored for

different scenarios. A notable example that demonstrates this is during the checking of

condition A, where the locations of the two cuts, l and r, must be determined before

identifying the location of m. The l is located using the left-to-right approach, while the

r is identified through the right-to-left variation. Listing 3.6 shows the implementation

of the right-to-left binary search. Another variant is provided in Listing B.7.

3In this case, we just return the whole cake or the end of a piece of cake.

Chapter 3. Code Implementation 18

def _binary_search_left_to_right(preference: List[Segment],

cake_size: Decimal , epsilon: Decimal , start: Decimal , end:

Decimal , target: Decimal , tolerance: Decimal = to_decimal(1e-10),

max_iterations: int = 1000) -> Decimal:

full_cake = get_double_prime_for_interval(segments=preference ,

epsilon=epsilon , start=start , end=end, cake_size=cake_size)

if full_cake < target:

return end

original_start = start

iteration = 0

while end - start > tolerance and iteration < max_iterations:

mid = to_decimal((start + end) / 2)

searched_value = get_double_prime_for_interval(segments=

preference , epsilon=epsilon , start=original_start , end=

mid, cake_size=cake_size)

if abs(searched_value - target) < tolerance:

return mid

if searched_value < target:

start = mid

else:

end = mid

iteration = iteration + 1

return to_decimal((start + end) / 2)

Listing 3.6: Binary Search From Left to Right.

3.4 Equipartition

In the work of Hollender and Rubinstein [12], they theoretically proved that at most

O(log2(1/ε)) evaluation requests are needed to find a unique equipartition that divides

the cake into four equal pieces according to Agent 1’s preference. In practice, leveraging

the Evaluation request model alongside binary search, we can find this equipartition in

O(log(1/ε)). The approach is straightforward. Due to the normalisation property of

the evaluation functions, Agent 1 consistently expects the value of each piece in the

Chapter 3. Code Implementation 19

equipartition to be 0.25. We then use binary search within predictably appropriate sets

to locate the exact position of these desired cuts. For example, l must lie within [0,1],

m must lie within [l,1], and r must lie within [m,1]4. The code is shown in Listing 3.7.

def equipartition(preference: List[Segment], cake_size: Decimal ,

epsilon: Decimal , start: Decimal , end: Decimal , tolerance:

Decimal = to_decimal(1e-10)) -> List[Decimal]:

total_v = get_double_prime_for_interval(segments=preference ,

epsilon=epsilon , start=start , end=end, cake_size=cake_size)

segment_value = total_v / 4 # Expected to be 0.25

Finding cuts at 1/4, 1/2, and 3/4 of the cake

first_cut = _binary_search_left_to_right(preference=preference ,

cake_size=cake_size , epsilon=epsilon , start=start , end=end,

target=segment_value , tolerance=tolerance)

second_cut = _binary_search_left_to_right(preference=preference ,

cake_size=cake_size , epsilon=epsilon , start=first_cut , end=

end, target=segment_value , tolerance=tolerance)

third_cut = _binary_search_left_to_right(preference=preference ,

cake_size=cake_size , epsilon=epsilon , start=second_cut , end=

end, target=segment_value , tolerance=tolerance)

return [first_cut , second_cut , third_cut]

Listing 3.7: Equipartition in Practice.

Figure 3.2: Different Methods Yield the Same (l,m,r) for the Unique Equipartition.

4There are alternative sequences for finding such an equipartition. For instance, one can use left-to-
right binary search to find l and right-to-left binary search to find r, then determine m within the interval
[l,r]. Ultimately, all methods yield the same unique (l,m,r) for the unique equipartition, if one exists.

Chapter 3. Code Implementation 20

3.5 Conditions Handling

Given a division (X1,X2,X3,X4) where X =
⋃4

j=1 X j, we now provide the formal defini-

tions of Conditions A and B:

• Condition A: If the division (X1,X2,X3,X4) satisfies Condition A, then for

any piece k ∈ {1,2,3,4}, it holds that v1(Xt) = α for all t ∈ {1,2,3,4} \ {k}.

Furthermore, there must exist two distinct agents i, i
′ ∈ {2,3,4} such that: 1.

vi(Xk)≥ maxt vi(Pt). 2. vi′(Xk)≥ maxt vi′(Xt).

• Condition B: If the division (X1,X2,X3,X4) satisfies Condition B, then for any

agent i ∈ {2,3,4} and two distinct pieces k,k
′ ∈ {1,2,3,4}, it holds that vi(Xt) =

vi(Xt ′) and v1(Xt) = α for all t ∈ {1,2,3,4}\{k,k
′}. Furthermore, these should

also be satisfied:

1. v1(Xk)≤ α and v1(Xk′)≤ α.

2. vi(Xk) = vi(Xk′)≥ maxt vi(Xt).

3. there must exist an agent i
′ ∈ {2,3,4}\{i} such that vi′ (Xk)≥ maxt vi′ (Xt).

4. there must exist an agent i
′ ∈ {2,3,4}\{i} such that vi′ (Xk′)≥ maxt vi′ (Xt).

Both conditions can be considered in a two-step process. For Condition A, we first

identify all possible values of k and determine the corresponding cuts. We then verify

whether at least two agents satisfy the additional condition. Similarly, for Condition

B, we identify the relevant agents i, k and k
′
, determine the corresponding cuts, and

subsequently check if the additional conditions are met.

3.5.1 Condition A

Given an α ∈ [0,1], for each of the four possible values of k, we can find the exact

and unique cuts in O(log(1/ε)), ensuring that all other pieces of the cake, except for k,

have an exact value of α. Consider the case where k is the leftmost piece of cake. We

can perform a right-to-left binary search to find r such that v1(r,1) = α. Similarly, we

then find m such that v1(m,r) = α, and finally l such that v1(l,m) = α. In this way, we

determined the exact position of cuts (l,m,r), where each piece has a value of exactly

α, except for k. Next, we check if there are at least two agents who prefer k. If this is

the case, the division satisfies Condition A at value α. Otherwise, this division does not

Chapter 3. Code Implementation 21

Figure 3.3: Solutions of All Possible identity of piece k.

satisfy Condition A at this point. The demonstrated case and the other three cases are

shown in Figure 3.3.

As previously discussed, the process of handling Condition A begins with identifying

k and determining the cuts. Once a suitable k and the corresponding cuts are found, we

check whether there are at least two other agents prefer k. If not, it will try to identify

another different k.

def check_condition_a(alpha: Decimal , preferences: Preferences ,

cake_size: int, epsilon: Decimal , tolerance: Decimal) -> Tuple[

bool , Dict[str, Any]]:

preference_a = preferences[0]

Find cuts and identify k

for k in POSIBLE_K:

results = _find_cuts_and_k_for_condition_a(k=k, alpha=alpha ,

preference=preference_a , cake_size=to_decimal(cake_size)

, epsilon=epsilon , tolerance=tolerance)

if len(results) == 0:

continue

cuts = results["cuts"]

k = results["k"]

...

Listing 3.8: Condition A Handling Part 1

Using two types of binary searches in different orders is sufficient to address all four

possible cases of k. A part of the implementation of finding cuts and k for Condition A

is provided in Listing 3.9.

def _find_cuts_and_k_for_condition_a(k: int, alpha: Decimal ,

cake_size: Decimal , preference: List[Segment], epsilon: Decimal ,

tolerance: Decimal = to_decimal(1e-3)) -> Dict[str, Any]:

if k == 0:

Chapter 3. Code Implementation 22

r = _binary_search_right_to_left(preference=preference ,

cake_size=cake_size , epsilon=epsilon , start=start , end=

end, target=alpha , tolerance=tolerance)

m = _binary_search_right_to_left(preference=preference ,

cake_size=cake_size , epsilon=epsilon , start=start , end=r,

target=alpha , tolerance=tolerance)

l = _binary_search_right_to_left(preference=preference ,

cake_size=cake_size , epsilon=epsilon , start=start , end=m,

target=alpha , tolerance=tolerance)

remained_value = get_double_prime_for_interval(preference ,

epsilon , start=start , end=l, cake_size=to_decimal(

cake_size))

if remained_value <= alpha:

return {"cuts": [l, m, r], "k": 0}

if k == 1:

...

Listing 3.9: Find Cuts and K for Condition A

We then check whether at least two other agents prefer k. This is accomplished using

the function check if weakly prefer piece k, which is literally a wrapper function that

simply checks that if a particular agent’s evaluation of the interval [start,end] is at least

as large as the highest evaluated value, excluding k, which in this context is α.

...

start_k , end_k = get_range_by_cuts(cuts ,k,to_decimal(

cake_size))

v_1 = get_double_prime_for_interval(segments=preference_a ,

epsilon=epsilon ,start=start_k ,end=end_k ,cake_size=

cake_size)

weak_preference = [False for _ in range(len(preferences))]

check if at least two of the other agents weakly prefer k

for i in range(1, len(preferences)):

weak_preference[i] = _check_if_weakly_prefer_piece_k(

preference=preferences[i],cake_size=to_decimal(

cake_size),epsilon=epsilon ,start=start_k ,end=end_k ,

alpha=k_1)

if sum(weak_preference) >= 2:

return (True , {"cuts": cuts , "k": k})

else:

return (False , {})

Listing 3.10: Condition A Handling Part 2

Chapter 3. Code Implementation 23

3.5.2 Condition B

For Condition B, we first need to examine all agents i∈ {2,3,4} and identify all possible

cases where Agent 1 does not prefer pieces k and k
′
. There are six cases, which are

characterised in Listing 3.11. Based on this, we can then identify the appropriate cuts.

Finally, we verify whether there are any agents i
′ ∈ {2,3,4}\{i} who are indifferent

between pieces k and k
′
. If such agents exist, then we state that Condition B is satisfied.

POSSIBLE_K_AND_K_PRIME_COMBINATION_ON_CONDITION_B = [

(0, 1, [2, 3]), (0, 2, [1, 3]), (0, 3, [1, 2]),

(1, 2, [0, 3]), (1, 3, [0, 2]), (2, 3, [0, 1]),

]

Listing 3.11: Possible Identity of k and k
′
On Condition B

In order to find the positions of the cuts corresponding to all possible combinations

(k,k
′
), we have three handlers. As shown in Listing 3.12.

CONDITION_B_HANDLERS = {

(0, 1): _handle_adjacent , (1, 2): _handle_adjacent ,

(2, 3): _handle_adjacent , (0, 2): _handle_one_between ,

(1, 3): _handle_one_between , (0, 3): _handle_leftmost_rightmost ,

}

Listing 3.12: Handlers for Handling Each Possible Case (k,k
′
)

We perform operations similar to Condition A when k and k
′
are adjacent. Supposing

k and k
′
are the first and second pieces of the cake is an effective example to illustrate

this process. We can use two right-to-left binary searches to find the exact position of

cuts r and m successively to ensure that v1(r,1) = α and v1(m,r) = α. Next, a general

binary search is employed to divide the cake into two equal parts within an interval

according to Agent i’s preference, in this case, finding a cut l such that vi(0, l) = vi(l,m).

This binary search, with a complexity of O(log(1/ε)), is detailed in Listing 3.13.

def _find_balanced_cut_for_adjacent(preference: List[Segment],

cake_size: Decimal ,epsilon: Decimal ,left: Decimal ,right: Decimal ,

tolerance: Decimal ,max_iterations: int = 1000) -> Decimal:

start , end, iteration = left , right , 0

while end - start > tolerance and iteration < max_iterations:

m = (start + end) / 2

first_half_value = get_double_prime_for_interval(segments=

preference ,epsilon=epsilon ,start=left ,end=m,cake_size=

cake_size)

Chapter 3. Code Implementation 24

second_half_value = get_double_prime_for_interval(segments=

preference ,epsilon=epsilon ,start=m,end=right ,

cake_size=cake_size)

if abs(first_half_value - second_half_value) < tolerance:

return m

if first_half_value < second_half_value:

start = m

else:

end = m

iteration += 1

return (start + end) / 2

Listing 3.13: Generic Binary Search For Dividing an Interval into Equal Two Parts

The full implementation of handle adjacent is presented in Listing B.11, while all

corresponding solutions are illustrated in Figure 3.4.

Figure 3.4: Solutions of All Possible identity of adjacent piece k and k
′
.

When it comes to there is one piece between k and k
′
, the process differs from the

previous case where exact positions for two cuts could be determined before finding a

third. Assuming that k is the first piece of the cake, and k
′
is the third. In this scenario,

we can be certain that there is a cut r can be found such that v1(r,1) = α. Additionally,

for every possible position of l, there exists a unique cut m(l) such that v1(l,m(l)) = α.

At this point, we are assured that the value of the other two pieces of cake, except for

k and k
′
, is at least α from the perspective of Agent 1. Finally, based on the fact that

as l moves to the right, the interval [m(l),r] becomes smaller, a point5 will eventually

be reached where vi(0, l) = vi(m(l),r), which can be located using binary search. This

5Hollender and Rubinstein [12] suggest first identifying appropriate intervals for both of l and
m, and then determining their final positions based on the information obtained. In practice, these
suitable intervals are often extremely narrow. For example, a suitable interval for r might be
[0.74999999999999999999,0.75000000000001], where such minimal differences are often negligible
in float-point calculations. Additionally, it is common for the upper and lower bounds of the interval to
converge to a single point. The function handle leftmost rightmost employs this approach, which is
computationally intensive and produces marginal gains.

Chapter 3. Code Implementation 25

process requires O(log2(1/ε)) evaluation requests, because for a given cut l, it takes

O(log(1/ε)) to find m(l), and then l is adjusted to find the desired positions of l and m.

The core algorithm for this scenario is presented in Listing 3.14, and the case where

(k,k
′
) = (1,3) follows a similar approach to what has been previously discussed. That is,

the position of l is fixed, and a dynamic m(r) must be found to satisfy v1(m(r),r) = α.

Subsequently, r is adjusted to finalise the positions of both m and r. The complete

handle one between implementation is provided in Listing B.12.

def _binary_search_case_0_2(preference_1: List[Segment],preference_i

: List[Segment],epsilon: Decimal ,l_start: Decimal ,l_end: Decimal ,

alpha: Decimal ,cake_size: Decimal ,tolerance: Decimal ,

max_iterations: int = 1000) -> Tuple[Decimal , Decimal]:

original_l_end = to_decimal(l_end) # namely r

iteration , m_for_l = 0, to_decimal(0)

while l_end - l_start > tolerance and iteration <max_iterations:

l = (l_start + l_end) / 2

m_for_l = _find_m_given_l(l=l,r=original_l_end ,alpha=alpha ,

preference_1=preference_1 ,cake_size=cake_size ,epsilon=

epsilon ,tolerance=tolerance)

searched_value = get_double_prime_for_interval(segments=

preference_i ,epsilon=epsilon ,start=to_decimal(0),end=l,

cake_size=to_decimal(cake_size))

Want v_i[(0, l)]= v_i[(m(l), r)]

desired_value = get_double_prime_for_interval(segments=

preference_i ,epsilon=epsilon ,start=m_for_l ,end=

original_l_end ,cake_size=to_decimal(cake_size))

if abs(searched_value - desired_value) <= tolerance:

return l, m_for_l

if searched_value < desired_value:

l_start = l

else:

l_end = l

iteration = iteration + 1

return to_decimal((l_start + l_end) / 2), m_for_l

Listing 3.14: Binary Search Handle (k,k
′
) = (0,2)

When (k,k
′
) = (0,3), none of the cuts are predetermined. For any given l, we

can determine the unique cuts m(l) and r(l) such that v1(l,m(l)) = v1(m(l),r(l)) = α.

Subsequently, we adjust l to identify the possible interval where vi(0, l) = vi(r(l),1)

Chapter 3. Code Implementation 26

is satisfied. Analogously, the same procedure is applied to m and r. Ultimately, we

determine the possible intervals for the cuts l, m, and r to precisely locate the exact

positions of the cuts. It is important to note that after determining the possible intervals

for the three cuts, we use the narrowest interval to identify the final cut positions, as

defined in Listing 3. The function handle leftmost rightmost is too cumbersome to

include here due to space constraints. The full implementation can be found in the code

repository6.

def _find_best_cuts_by_range(lower_l: Decimal ,upper_l: Decimal ,

lower_m: Decimal ,upper_m: Decimal ,lower_r: Decimal ,upper_r:

Decimal) -> List[Decimal]:

return [upper_l , (lower_m + upper_m) / 2, lower_r]

Listing 3.15: Find Best Cuts by Range

3.6 Wrap Up

With all components of the algorithm in place, we can now proceed to finalise it7.

Following the algorithm’s flow outlined in Section 2.3.2, the first step is to determine

whether an envy-free equipartition already exists. If an envy-free equipartition is

found, then the desired ε-EF has been achieved. As Listing 3.16 shows. When a set

of cuts (l,m,r) that appears promising for achieving an ε-EF division is identified

we use the find envy free allocation function to exhaustively check all possible envy-

free allocations. For four agents, there are 24 possible allocations (n! = 4! = 24).

Once such an allocation is found, it is immediately returned.8 The implementation of

find envy free allocation is provided in Listing B.8.

def alex_aviad(preferences: Preferences , cake_size: int, epsilon:

Decimal , tolerance: Decimal) -> Dict[str, Any]:

assert len(preferences) == 4, "Need 4 agents here"

solution , steps = [], []

Find the equipartition by Agent1

cuts = equipartition(preferences[0], to_decimal(cake_size),

epsilon , to_decimal(0), to_decimal(cake_size), tolerance)

solution = find_envy_free_allocation(cuts=cuts , num_agents=4,

cake_size=to_decimal(cake_size), preferences=preferences ,

epsilon=epsilon)

6https://github.com/yongtenglei/treat cake
7The Hollender-Rubinstein Algorithm is referred to as the alex aviad algorithm in its implementation.
8If multiple allocations meet the criteria, the first one identified is returned.

Chapter 3. Code Implementation 27

if solution is not None:

return {"solution": solution , "steps": steps}

Listing 3.16: Hollender-Rubinstein Algorithm Part 1

If no envy-free equipartition is found, we proceed to the main loop of the algorithm.

Prior to this, it is necessary to set the initial values for α and ᾱ.

...

Set alpha_underline as the value of 1/4 cake

alpha_underline = get_double_prime_for_interval(preferences[0],

epsilon , to_decimal(0), cuts[0], to_decimal(cake_size))

Expected to be 1

alpha_overline = get_double_prime_for_interval(preferences[0],

epsilon , to_decimal(0), to_decimal(cake_size), to_decimal(

cake_size))

alpha = -1

Listing 3.17: Hollender-Rubinstein Algorithm Part 2

Next, we enter the main loop, which continues until ᾱ−α ≤ ε4/12 or until the loop

has run 100 iterations9. It is important to note that Condition A is specifically satisfied

within the interval [α=
4 ,α

=
3], while Condition B is met within the interval [α=

4 ,α
=
2].

However, within a specific interval, both conditions can be simultaneously satisfied, at

which point they are considered equivalent. In our implementation, we therefore omit

the check for Condition B.

...

condition_info = {

"A": {"cuts": [], "k": -1, "alpha_underline": -1},

"B": {"cuts": [], "k": -1, "k_prime": -1, "alpha_underline":

-1},

}

meet_condition , counter = "", 0

Main loop

while abs(alpha_overline - alpha_underline) > (epsilon**4 / 12)

and counter <= 100:

alpha = (alpha_underline + alpha_overline) / 2

if to_decimal (0.25) <= alpha < Decimal("1") / Decimal("3"):

9The algorithm is generally expected to terminate once the exit condition 1 is met. The 100-iteration
limit is imposed solely to ensure termination. According to our experiments, when ε is sufficiently small,
even with this iteration limit, the algorithm may require an impractical amount of time to complete and
result in undesirable outcome.

Chapter 3. Code Implementation 28

meet_a , condition_a_info = check_condition_a(alpha=alpha

, preferences=preferences , cake_size=to_decimal(

cake_size), epsilon=epsilon , tolerance=tolerance)

if meet_a:

meet_condition = "A"

condition_info["A"] = condition_a_info

condition_info["A"]["alpha_underline"] =

alpha_underline

alpha_underline = alpha

counter += 1

continue

if to_decimal (0.25) <= alpha < to_decimal (0.5):

meet_b , condition_b_info = check_condition_b(alpha=alpha

, preferences=preferences , cake_size=to_decimal(

cake_size), epsilon=epsilon , tolerance=tolerance)

if meet_b:

meet_condition = "B"

condition_info["B"] = condition_b_info

condition_info["B"]["alpha_underline"] =

alpha_underline

alpha_underline = alpha

counter += 1

continue

alpha_overline = alpha

counter += 1

...

Listing 3.18: Hollender-Rubinstein Algorithm Part 3

After the main loop exits, we identify an ε-EF allocation using the final information

that satisfies either Condition A or B at α, and then return the result.

allocation = None

if meet_condition == "A":

allocation = find_allocation_on_condition_a(preferences=

preferences , cake_size=to_decimal(cake_size), cuts=

condition_info["A"]["cuts"], episilon=epsilon , k=

condition_info["A"]["k"])

elif meet_condition == "B":

allocation = find_allocation_on_condition_b(cuts=

condition_info["B"]["cuts"], cake_size=to_decimal(

Chapter 3. Code Implementation 29

cake_size), episilon=epsilon , k=condition_info["B"]["k"],

k_prime=condition_info["B"]["k_prime"], preferences=

preferences)

return {"solution": allocation , "steps": steps}

Listing 3.19: Hollender-Rubinstein Algorithm Part 4

Chapter 4

Discussion

4.1 Code Implementation Review

Overall, the Hollender-Rubinstein Algorithm has been successfully implemented. When

all agents share the same evaluation functions, the algorithm can accurately and fairly

allocate the cake among all agents, relying on effectively function of Equipartition and

two types of binary searches. However, when entering the main loop, the algorithm

becomes more sensitive to the inputs. For example, when the agents’ evaluation

functions lack certain distinctive features, it may be difficult to satisfy either of the

two conditions, potentially leading to the failure of the algorithm to achieve a fair

allocation. The expected path that consistently holds an invariant, such as Condition A -

Condition B - Condition B - . . . - Condition A, eventually leading to an ε-envy-free

allocation, may only satisfy the invariant under specific conditions during the execution

of algorithm. Thus, this implementation is not a universal algorithm applicable to all

general evaluation functions. It is constrained by the agents’ preferences, computation

precision, and potential implementation errors.

4.1.1 Agents Preferences

Figure 4.1 illustrates a randomised preferences of four agents. Agent 1 evaluates the

entire cake with an average value of 10, while the other agents evaluate the cake in

the same way but with lower values. This will cause Condition A to fail consistently:

If k is the rightmost piece, after we perform three left-to-right dichotomies, the last

remaining piece k satisfies v1(r,1)≤ α. Since the evaluations of the other three agents

are consistently lower than those of Agent 1 and are evenly distributed, we can never

30

Chapter 4. Discussion 31

Figure 4.1: Agent Preferences Potentially Failing Conditions A and B.

find a cut r such that vi(r,1)≥ α, where i ∈ {2,3,4}. Such additional checks will also

fail in the other three cases, analogously.

For Condition B, it can only be satisfied when α ∈ [α=
4 ,α

=
2] = [0.25,0.5]. Taking

the tightest case of α = 0.25 as an example, half of the cake will be equally divided

by Agent 1, and a cut point can be found to make the other half of the cake equal in

value from Agent i’s perspective. However, since the evaluations of the possible agents

i ∈ {2,3,4} are constant, we cannot satisfy the sub-condition 2 of Condition B, vi(Xk) =

vi(Xk′)≥ maxt vi(Xt), within a smaller or equal interval, due to the Monotonicity of the

evaluation functions. This will cause the failure to meet the Condition B.

4.1.2 Computation Precision and Tolerance

The algorithm relies heavily on floating point calculations, as ε is expected to be a very

small number and the evaluation functions have values in the range [0,1], the algorithm

uses the Python library decimal.Decimal with a precision of 15 floating point numbers

to enhance the processing. Specifically, the precision plays an important role in the

calculation of the modified evaluation functions v
′′
i . Modified evaluation functions v

′′
i is

the interpolation of v
′
i on the ε-grid, and only enough precision can make such a small

step movement meaningful. In addition, the conversion between the number of cake

segments and the interval [0,1], the normalisation and de-normalisation of evaluation

functions, all depend on high precision conversion to prevent the accumulation of errors

that could lead to unwanted results.

In high precision scenarios, comparisons between floating-point numbers can be

challenging and require careful handling. Table 4.1 illustrates two cases with different

tolerances: a more lenient tolerance is used when verifying the accuracy of the positions

of cut points, assuming the program is functioning correctly, while a stricter tolerance is

needed during binary search to ensure precision in finding cuts. However, not all cases

could be handled correctly, leading to unintended deviations of the algorithm from the

Chapter 4. Discussion 32

Left Right Pass

Verify cuts l and r: v 1(0, l) = α = v 1(r,1) 0.25641369 0.26039671 Yes

Check searched value = desired value in binary search 0.25741369 0.25741453 No

Table 4.1: Two Scenarios Requiring Different Tolerance levels for accurate computation.

desired result.

4.1.3 Potential Implementation Errors and Decisions

The Hollender-Rubinstein Algorithm is based on an intuitive idea, yet it requires an

extremely complex implementation. Although the code implementation was tested

extensively, with a reported code coverage of 71% in Appendix C.1, there were still

unanticipated boundary cases that were not tested. It is worth noting that while 85% of

the code related to Condition A has been tested, only 16% of the code for Condition

B was covered due to the intricate nature of applicable user inputs and the complexity

of Condition B. However, the behaviour of the code was verified through logging and

generally aligned with expectations.

There are two important decisions in the implementation that deviate from the de-

scription of Hollender and Rubinstein’s[12] work. The first function is the equipartition.

Hollender and Rubinstein [12] suggest that given any cut l, one should then search for

the positions of cuts m and r such that v1(0, l) = v1(l,m) = v1(m,r). An additional eval-

uation request is then used to verify that if vi(r,1) has the same value. Next, adjust the

position of l, if necessary. Then, we identified the intervals on the ε-grid that cut l must

lie. Analogously, intervals where m and r are located can also be found. Finally, this in-

formation is used to determine the exact locations of (l,m,r). This implementation has

a complexity of O(log2(1/ε)). In contrast, this project is based on the fact that, since the

value of the entire cake is normalised to 1, each piece in the equipartition is worth 0.25.

Based on this, we only need to use binary search to precisely and sequentially determine

the cuts (l, m, r), satisfying v1(0, l) = v1(l,m) = v1(m,r) = 0.25. The remaining cuts

must then also satisfy v1(r,1) = 0.25. In this way, we achieve equipartition with a

complexity of O(log(1/ε)). Experiments show that this implementation is complete.

On the other hand, another function addresses the case where Condition B involves

a piece between k and k
′
. As discussed in Section 3.5.2, the original work suggested

finding the exact locations of the cuts after determining the interval in which all cuts

lie on the ε-grid. However, our experiments have shown that such a interval is often

Chapter 4. Discussion 33

negligible. Therefore, in our implementation, we use the first suitable cut found directly

as an approximate position. In the case of k and k
′
are leftmost and rightmost pieces,

we adhere to the original implementation.

Consequently, potential implementation errors, variations in the implementation

approach, the complexity of floating-point computation, and the nature of user inputs,

all of these factors combined may lead to potential failure of the algorithm. Additionally,

the complexity of the implementation and the difficulty in tracing the sources of errors

make it challenging to find a solution within a limited time period.

4.2 Platform Integration

The aim of this project is to introduce the Hollender-Rubinstein Algorithm to the Fair

Slice platform, expanding its functionality from two and three agents to a four-agent

scenario, while maintaining its interactive and user-friendly features. As shown in

Figure 4.2, users can easily add an agent and draw their preferences for all agents before

seeking an allocation through the Hollender-Rubinstein Algorithm. Figure 4.3 presents

a scenario where four individuals share the same evaluation function, resulting in an

ε-envy-free division that relies solely on equipartition. Fair Slice displays the proportion

of the total cake assigned to each agent, as well as each agent’s preference for each

piece, in two distinct and intuitive formats. Additionally, a visual representation of the

allocation process is provided to enhance the user’s understanding of how the division

is achieved.

Figure 4.2: Users Can Easily Extend the Scenario to Include a Fourth agent.

Chapter 4. Discussion 34

For the general case, Figure 4.4 illustrates the experimentally selected preferences

of agents with specific tendencies, as shown in Figure 4.4a, where Agent i has a clear

preference for the ith piece and exhibits only limited interest in the other pieces. For

instance, Agent 2 assigns the highest valuation only to the vicinity of the expected

second piece of the cake, showing little interest in the remaining pieces. Such preferen-

tial valuations facilitate the smooth progression of the main loop. The final allocation

is displayed in Figure 4.4b. As shown, this is not an envy-free allocation, as Agent

1 envies Agent 2’s second piece, which is valued 30% for Agent 1 compared to the

26.4% allocated. Therefore, this represents an ε-envy-free allocation, where ε = 1e−5

in the setting. Additionally, an interesting observation is that for Agent 3, the entire

cake is worth 99.9%, whereas for the other agents, it is 100%, reflecting the minor error

introduced by floating-point calculation.

Figure 4.3: Example with the Same Evaluation Functions

Fair Slice is primarily an educational tool, with previous work effectively introducing

concepts like fair division, Cut & Choose, and the Selfridge-Conway Method in an

engaging and accessible manner. This work builds on that foundation, as illustrated

Chapter 4. Discussion 35

(a) Experimentally Selected Preferences

(b) Result of General Case Yielding ε-envy-free

Allocation Where ε = 1e−5

Figure 4.4: Example with Experimentally Selected Evaluation Functions

Figure 4.5: Interactive course: Introduction of Hollender-Rubinstein Algorithm

Figure 4.6: Interactive course: Equipartition of Hollender-Rubinstein Algorithm

Chapter 4. Discussion 36

in Figures 4.5 and 4.6, by introducing a new character, Derek, to demonstrate the

elegance of fair division among four agents. The course page about Condition Handling

is provided in Appendix C.2.

Figure 4.7: Condition Handling Course Part 1

4.3 Limitations

The limitations of this project can be viewed in two parts, the implementation of

the code and its integration with Fair Slice. As previously discussed, although our

algorithm can accurately and efficiently handle scenarios where four agents share

the same evaluation functions, and the results depend solely on equipartition, issues

may arise when different ε values, tolerances, or user inputs are introduced. This can

cause the algorithm to stagnate, produce undesired results, or even fail to produce

any results if neither Condition A nor Condition B is satisfied. For example, while an

equipartition may yield an instantaneous result, the main loop could take several minutes

to complete dozens of rounds with an uncertain outcome. The algorithm’s reliance on

critical floating-point calculations makes it vulnerable to inappropriate settings, leading

to potential stagnation. The fact that the algorithm operates with specific ε values

Chapter 4. Discussion 37

and tolerances indicates that the implementation is not entirely robust. Additionally,

the code related to Condition B has only 16% test coverage. Although its behaviour

has been verified through logging, there remains a possibility of inaccuracies in the

implementation.

For Fair Slice integration, the Hollender-Rubinstein Algorithm provides limited

flexibility, as it does not allow users to set the value of ε or the tolerance. A strict

tolerance improves the algorithm’s accuracy, while a more lenient tolerance speeds

up the response time. Additionally, the interactive educational page for Equipartition

employs a local solution storage solution, which preloads sample evaluation functions

and loads the solution locally, thus limits user interaction. This setup reduces the overall

interactivity and engagement of the course. Furthermore, because Condition Handling

is highly sensitive to input, we still provide users with sample evaluation functions and

only offer textual descriptions of the algorithmic process and then display the results.

The educational value of this approach could be further evaluated.

4.4 Future Work

Firstly, the robustness of the algorithm should be guaranteed. The algorithm should be

able to dynamically adapt to any given value of ε and tolerance to ensure the smooth

running of the programme and the accuracy of the results, which requires further

refinement of the codebase. Additionally, the failure of the algorithm due to user inputs

contradicts Hollender and Rubinstein’s theory that, given any α, the algorithm will

hold Condition A and Condition B until it terminates, yielding a desired ε-envy-free

allocation. The conflict between theory and practice needs to be resolved with further

research and more testing.

Furthermore, if the Hollender-Rubinstein Algorithm is not a generalised four-agent

fair allocation solution. An alternative approach, based on piecewise-constant valuations

for n agents, as suggested by the supervisor, Aris Filos-Ratsikas, could be integrated

into Fair Slice to extend its functionality to n-agent scenarios, though it may reduce the

flexibility in preference expression.

Once the Hollender-Rubinstein Algorithm is made more robust, users could be given

the ability to input their own preferred parameters to explore custom fair division solu-

tions. Additionally, the interactive educational interface for the Hollender-Rubinstein

Algorithm should be enhanced to be more engaging and interactive, potentially by

offering a playground environment for users.

Chapter 5

Conclusions

In summary, this project investigated the design of four-agent fair division in greater

depth, with a particular focus on the work of Hollender and Rubinstein [12]. By

thoroughly exploring and understanding their proposed theory, it was successfully

translated into practical, executable code and seamlessly integrated into Fair Slice Ernst

[11], a fair division visualisation tool. This integration extended the tool’s functionality

to four-agent scenarios, complemented by easy-to-understand, interactive courses that

further aligned with its mission as an educational presentation tool.

In this project, we have presented a clear and intuitive overview of the newly

integrated Hollender-Rubinstein Algorithm, highlighting the key aspects necessary

for its comprehensive understanding. Chapter 2 provided the essential background

on fair division within the context of divisible resources, commonly referred to as

the cake-cutting problem. It emphasised the properties of evaluation functions, com-

putational approaches, and introduced the most widely recognised fairness criterion,

envy-freeness, along with its relaxation, ε-envy-freeness, which was adopted in this

project. We then reviewed the history of divisible fair division, highlighting the achieve-

ments in four-agent scenarios and the challenges that remain. This set the stage for

introducing the Hollender-Rubinstein Algorithm, a recently proposed and promising

fair division method. In Chapter 3, we comprehensively detailed the theory and im-

plementation of the Hollender-Rubinstein Algorithm, breaking it down into six key

components to provide readers with a deeper insight into the theoretical foundations

and implementation choices. The subsequent discussion evaluated existing implementa-

tions, identifying gaps between theoretical concepts and real-world applications, the

challenges encountered during implementation, and the intensive deviations from the

original work. Additionally, we presented the results of integrating the algorithm with

38

Chapter 5. Conclusions 39

Fair Slice. Finally, the project’s limitations were discussed, along with suggestions for

potential future work.

As a final conclusion, it has been a great honour to write this dissertation, showcasing

all the efforts made over the past two months. As demonstrated in this dissertation, it is

dedicated to introducing the reader to fair division in a friendly manner and helping them

understand the exciting and promising work of the Hollender-Rubinstein Algorithm.

The work presented aligns closely with the goals of Fair Slice, which aims to bring the

field of fair division to the attention of the general public and offer meaningful insights

to scholars in this field. To fully realise this vision, it will require ongoing research and

sustained effort.

Bibliography

[1] A Keith Austin. “Sharing a cake”. In: The Mathematical Gazette 66.437 (1982),

pp. 212–215.

[2] Haris Aziz and Simon Mackenzie. “A discrete and bounded envy-free cake cut-

ting protocol for any number of agents”. In: 2016 IEEE 57th Annual Symposium

on Foundations of Computer Science (FOCS). IEEE. 2016, pp. 416–427.

[3] Haris Aziz and Simon Mackenzie. “A discrete and bounded envy-free cake

cutting protocol for four agents”. In: Proceedings of the forty-eighth annual ACM

symposium on Theory of Computing. 2016, pp. 454–464.

[4] Dinesh Kumar Baghel, Vadim E. Levit, and Erel Segal-Halevi. Fair Division

Algorithms for Electricity Distribution. 2022. arXiv: 2205.14531 [cs.GT]. URL:

https://arxiv.org/abs/2205.14531.

[5] Steven Brams, Alan Taylor, and William Zwicker. “A moving-knife solution

to the four-person envy-free cake-division problem”. In: Proceedings of the

american mathematical society 125.2 (1997), pp. 547–554.

[6] Steven J Brams and Alan D Taylor. “An envy-free cake division protocol”. In:

The American Mathematical Monthly 102.1 (1995), pp. 9–18.

[7] Steven J Brams and Alan D Taylor. Fair Division: From cake-cutting to dispute

resolution. Cambridge University Press, 1996.

[8] Steven J Brams and Alan D Taylor. The win–win solution: Guaranteeing fair

shares to everybody. WW Norton & Company, 2000.

[9] Simina Brânzei and Noam Nisan. “The query complexity of cake cutting”. In:

Advances in Neural Information Processing Systems 35 (2022), pp. 37905–37919.

[10] John Cloutier, Kathryn L Nyman, and Francis Edward Su. “Two-player envy-free

multi-cake division”. In: Mathematical Social Sciences 59.1 (2010), pp. 26–37.

[11] Andy Ernst. Fair Slice. 2024. URL: https://fairslice.netlify.app/.

40

BIBLIOGRAPHY 41

[12] Alexandros Hollender and Aviad Rubinstein. “Envy-free cake-cutting for four

agents”. In: 2023 IEEE 64th Annual Symposium on Foundations of Computer

Science (FOCS). IEEE. 2023, pp. 113–122.

[13] Bronislaw Knaster. “Sur le problème du partage pragmatique de H. Steinhaus”.

In: Annales de la Societé Polonaise de Mathematique. Vol. 19. 1946, pp. 228–

230.

[14] Hervé Moulin. Fair division and collective welfare. MIT press, 2004.

[15] Kathryn Nyman, Francis Edward Su, and Shira Zerbib. “Fair division with

multiple pieces”. In: Discrete Applied Mathematics 283 (2020), pp. 115–122.

ISSN: 0166-218X. DOI: https://doi.org/10.1016/j.dam.2019.12.018.

[16] Ariel D. Procaccia. “Cake Cutting Algorithms”. In: Handbook of Computational

Social Choice. Ed. by Felix Brandt et al. Cambridge University Press, 2016,

pp. 311–330.

[17] Kirk Pruhs and Gerhard J Woeginger. “Divorcing made easy”. In: Fun with

Algorithms: 6th International Conference, FUN 2012, Venice, Italy, June 4-6,

2012. Proceedings 6. Springer. 2012, pp. 305–314.

[18] Howard Raiffa. The art and science of negotiation. Harvard University Press,

1982.

[19] Jack Robertson and William Webb. Cake-cutting algorithms: Be fair if you can.

AK Peters/CRC Press, 1998.

[20] Jörg Rothe et al. Economics and computation. Vol. 4. Springer, 2015.

[21] Erel Segal-Halevi et al. “Envy-free division of land”. In: Mathematics of Opera-

tions Research 45.3 (2020), pp. 896–922.

[22] Erel Segal-Halevi et al. “Fair and square: Cake-cutting in two dimensions”. In:

Journal of Mathematical Economics 70 (2017), pp. 1–28. ISSN: 0304-4068. DOI:

https://doi.org/10.1016/j.jmateco.2017.01.007.

[23] Forest W Simmons and Francis Edward Su. “Consensus-halving via theorems

of Borsuk-Ulam and Tucker”. In: Mathematical social sciences 45.1 (2003),

pp. 15–25.

[24] Splitwise. Fairness Calculators – Rent Calculator. https://www.splitwise.

com/calculators/rent. (Visited on 07/23/2024).

BIBLIOGRAPHY 42

[25] H. Steinhaus. “Sur la division pragmatique”. In: Econometrica 17 (1949), pp. 315–

319. ISSN: 00129682, 14680262. URL: http://www.jstor.org/stable/

1907319 (visited on 08/10/2024).

[26] Hugo Steinhaus. “The problem of fair division”. In: Econometrica 16 (1948),

pp. 101–104.

[27] Francesco Tajani and Pierluigi Morano. “A model for the elaboration of fair divi-

sional projects in inheritance disputes”. In: Property Management 36.2 (2018),

pp. 186–202.

Appendix A

Complex Valuation Functions

A.1 Complexity of Piecewise Linear valuation functions

Given the two sides of the portion, the desired value (the area of the portion), and the

slope, Ernst [11] obtains the following formula to determine the cut point:

−Height±
√

Height2 +2 ·Slope ·Area

Slope

While traditional solutions result large inaccuracy in small intervals, this optimised

formula can produce the correct answer in 12 decimal places in such cases. The

decimal.Decimal from the decimal library in Python will be used in this project to

further improve it, and the precision is set to 15 decimal places. Through experimental

experiments, this precision is balanced between computational efficiency and result

accuracy.

A.2 More Complex Forms of Valuation Functions

More complex valuation functions, as illustrated in Figure A.1, are challenging to

integrate into the UI, and the significance of representing such preferences still requires

further investigation. However, these complex preferences can be approximated using

smaller piecewise linear intervals.

43

Appendix A. Complex Valuation Functions 44

Figure A.1: Concave and convex valuation

Appendix B

Code Implementation

B.1 Original Evaluation Functions

def get_value_for_interval(

segments: List[Segment], start: Decimal , end: Decimal

) -> Decimal:

"""

Returns the total value of an interval ,

even if covers several segments or splits segments in half.

"""

total = to_decimal(0)

start = to_decimal(start)

end = to_decimal(end)

for seg in segments:

if seg.end <= start or seg.start >= end:

this segment not relevant

continue

total += _measure_partial_segment(seg, start , end)

return total

def _measure_partial_segment(seg: Segment , start: Decimal , end:

Decimal) -> Decimal:

"""

Measures the area of a segment

Works with flat or sloped sections , whole numbers and decimals.

"""

45

Appendix B. Code Implementation 46

start = to_decimal(start)

end = to_decimal(end)

start_cap = max(start , to_decimal(seg.start))

end_cap = min(end, to_decimal(seg.end))

measuring_width = end_cap - start_cap

if measuring_width <= 0:

Nothing to measure

return to_decimal(0)

if seg.start_value == seg.end_value:

Flat section

return seg.start_value * measuring_width

else:

Sloped section

segment_width = seg.end - seg.start

slope = (seg.end_value - seg.start_value) / segment_width

start_val = seg.start_value + slope * (start_cap - seg.start

)

end_val = seg.end_value - slope * (seg.end - end_cap)

avg_value = (start_val + end_val) / 2

return measuring_width * avg_value

Listing B.1: Original Evaluation Functions

B.2 Normalisation and De-normalisation

def norm(v: Decimal , whole_cake_value: Decimal) -> Decimal:

"""

Adjust value from infinity to [0, 1]

"""

whole_cake_value = to_decimal(whole_cake_value)

v = to_decimal(v)

assert (

to_decimal(0) <= v <= whole_cake_value

), f"v must be greater than or equal to 0 and less than whole

cake value: {whole_cake_value}, got {v}"

if whole_cake_value == 0:

return to_decimal(0)

Appendix B. Code Implementation 47

return v / whole_cake_value

def de_norm(v: Decimal , whole_cake_value: Decimal) -> Decimal:

"""

De-normalize a value from [0, 1] back to [0, whole_cake_value].

"""

v = to_decimal(v)

whole_cake_value = to_decimal(whole_cake_value)

assert (

Decimal(0) <= v <= Decimal(1)

), f"Normalized value must be between 0 and 1, got {v}"

if whole_cake_value == 0:

return to_decimal(0)

return v * whole_cake_value

Listing B.2: Normalisation and De-normalisation

B.3 Final Modified Valuation Functions

def overline(x, delta , tolerance=Decimal("1e-10")) -> Decimal:

assert 0 <= x <= 1, f"got {x}, expect it between [0, 1]"

if x < delta or x == 0:

return delta

if x == 1:

return x

v = (x / delta).to_integral_value(rounding="ROUND_CEILING") *

delta

If x is exactly a multiple of delta , step up to the next

multiple

considering floating point precision issues

if abs(x % delta) < tolerance or abs(delta - (x % delta)) <

tolerance:

v += delta

Appendix B. Code Implementation 48

return min(v, to_decimal(1))

Listing B.3: Finding the smallest multiple in the δ-grid that is greater than or equal to x.

def _v_double_prime(segments: List[Segment], delta: Decimal , a:

Decimal , b: Decimal , cake_size: Decimal) -> Decimal:

Letting delta := epsilon , so,

any epsilon -envy -free allocation for (v_double_prime) is 5*

epsilon -envy -free for (v_prime) for each agent.

a_unit = to_decimal(scale_to_unit(a, cake_size))

b_unit = to_decimal(scale_to_unit(b, cake_size))

delta = to_decimal(delta)

Get the grid points around a and b

a_underline_unit = underline(a_unit , delta)

a_overline_unit = overline(a_unit , delta)

b_underline_unit = underline(b_unit , delta)

b_overline_unit = overline(b_unit , delta)

assert a_underline_unit <= a_unit <= a_overline_unit , "Wrong

grid points"

assert b_underline_unit <= b_unit <= b_overline_unit , "Wrong

grid points"

a_underline = scale_back_from_unit(a_underline_unit , cake_size)

a_overline = scale_back_from_unit(a_overline_unit , cake_size)

b_underline = scale_back_from_unit(b_underline_unit , cake_size)

b_overline = scale_back_from_unit(b_overline_unit , cake_size)

v_prime_a_under_b_over = _v_prime(segments , delta , a_underline ,

b_overline , cake_size)

v_prime_a_over_b_under = _v_prime(segments , delta , a_overline ,

b_underline , cake_size)

if a_overline_unit - a_unit >= b_unit - b_underline_unit:

v_prime_a_under_b_under = _v_prime(segments , delta ,

a_underline , b_underline , cake_size)

v_double_prime = (

(((a_overline_unit - a_unit) - (b_unit -

b_underline_unit)) / delta)

* v_prime_a_under_b_under

+ ((b_unit - b_underline_unit) / delta) *

Appendix B. Code Implementation 49

v_prime_a_under_b_over

+ ((a_unit - a_underline_unit) / delta) *

v_prime_a_over_b_under

)

if (a_unit == 0 and (a_unit - a_underline_unit) / delta *

v_prime_a_over_b_under == 0):

If start from 0, need to compensate the last term

v_double_prime += v_prime_a_over_b_under

return v_double_prime

elif a_overline_unit - a_unit <= b_unit - b_underline_unit:

v_prime_a_over_b_over = _v_prime(segments , delta , a_overline

, b_overline , cake_size)

v_double_prime = (

(((b_unit - b_underline_unit) - (a_overline_unit - a_unit))

/ delta)

* v_prime_a_over_b_over

+ ((a_overline_unit - a_unit) / delta) *

v_prime_a_under_b_over

+ ((b_overline_unit - b_unit) / delta) *

v_prime_a_over_b_under

)

return v_double_prime

raise ValueError("Should not reach here")

Listing B.4: Final modified v
′′
i valuation functions

def scale_back_from_unit(a: Decimal , cake_size: Decimal) -> Decimal:

"""

Adjust cut point value from [0, 1] back to [0, cake_size]

"""

assert (

to_decimal(0) <= a <= to_decimal(1)

), f"a must be greater than or equal to 0 and less than 1, to

transform back to [0, cake_size({cake_size})], got {a}, "

if cake_size == 1:

return to_decimal(a)

elif cake_size == 0:

return to_decimal(0)

Appendix B. Code Implementation 50

return to_decimal(a) * to_decimal(cake_size)

Listing B.5: Coverting segments range back from [0,1] to [0,∞].

def get_double_prime_for_interval(segments: List[Segment], epsilon:

Decimal , start: Decimal , end: Decimal , cake_size: Decimal) ->

Decimal:

assert 0 <= start <= end, "start or end out of range"

Make sure using Decimal

epsilon = to_decimal(epsilon)

start = to_decimal(start)

end = to_decimal(min(end, cake_size))

cake_size = to_decimal(cake_size)

tolerance = to_decimal("1e-10")

Only one segment

if end <= 1:

return _safe_double_prime(

_v_double_prime(segments , epsilon , start , end, cake_size

),

tolerance=tolerance ,

)

Multi -segments

total = to_decimal(0)

start_int = int(start)

end_int = int(end)

if start == to_decimal(start_int) and end == to_decimal(end_int)

:

return _safe_double_prime(

_v_double_prime(segments , epsilon , start , end, cake_size

),

tolerance=tolerance ,

)

Incomplete start segment

if start != to_decimal(start_int):

first_segment_end = to_decimal(min(end, to_decimal(start_int

+ 1)))

Appendix B. Code Implementation 51

total += _v_double_prime(segments , epsilon , start ,

first_segment_end , cake_size)

start_int += 1

Complete middle segments

for mid in range(start_int , end_int):

mid_start = to_decimal(mid)

mid_end = to_decimal(mid + 1)

if mid_end > end:

mid_end = end

total += _v_double_prime(segments , epsilon , mid_start ,

mid_end , cake_size)

Incomplete end segment

if end > to_decimal(end_int):

last_segment_start = to_decimal(end_int)

total += _v_double_prime(segments , epsilon ,

last_segment_start , end, cake_size)

return _safe_double_prime(total , tolerance=tolerance)

Listing B.6: Wrapper function to calculate the value of v
′′
i for any given interval

B.4 Binary Search

def _binary_search_right_to_left(preference: List[Segment],

cake_size: Decimal , epsilon: Decimal , start: Decimal , end:

Decimal , target: Decimal , tolerance: Decimal = to_decimal(1e-10),

max_iterations: int = 1000) -> Decimal:

full_cake = get_double_prime_for_interval(

segments=preference ,

epsilon=epsilon ,

start=start ,

end=end ,

cake_size=cake_size ,

)

if full_cake < target:

return start

original_end = end

iteration = 0

Appendix B. Code Implementation 52

while end - start > tolerance and iteration < max_iterations:

mid = to_decimal((start + end) / 2)

searched_value = get_double_prime_for_interval(segments=

preference , epsilon=epsilon , start=mid, end=original_end ,

cake_size=to_decimal(cake_size))

if abs(searched_value - target) < tolerance:

return mid

if searched_value < target:

end = mid

else:

start = mid

iteration = iteration + 1

return to_decimal((start + end) / 2)

Listing B.7: Binary Search From Right to Left.

B.5 Find Envy-Free Allocation

It relies on Listing B.9 and Listing B.10.

def find_envy_free_allocation(

cuts: List[Decimal],

num_agents: int,

cake_size: Decimal ,

preferences: Preferences ,

epsilon: Decimal ,

) -> List[AssignedSlice]:

cake_size = to_decimal(cake_size)

for allocation in generate_all_possible_allocations(cuts ,

num_agents):

envy_free_allocation = []

for agent_id , slices in enumerate(allocation):

for slice_index in slices:

if slice_index == 0:

start = 0

else:

start = cuts[slice_index - 1]

Appendix B. Code Implementation 53

if slice_index == len(cuts):

end = cake_size

else:

end = cuts[slice_index]

unassigned_slice = cut_slice(

preferences=preferences ,

cake_size=to_decimal(cake_size),

epsilon=epsilon ,

start=to_decimal(start),

end=to_decimal(end),

id=slice_index ,

note=None ,

)

envy_free_allocation.append(unassigned_slice.assign(

agent_id))

if check_if_envy_free(num_agents , envy_free_allocation):

return envy_free_allocation

return None

Listing B.8: Find Envy-Free Allocation.

def generate_all_possible_allocations(cuts: List[Decimal],

num_agents: int):

slices = list(range(len(cuts) + 1))

assert len(slices) == num_agents

for perm in permutations(slices , num_agents):

allocation = [[] for _ in range(num_agents)]

for i, slice_index in enumerate(perm):

allocation[i % num_agents].append(slice_index)

yield allocation

Listing B.9: Generate All Possible Allocation.

def cut_slice(

preferences: Preferences ,

cake_size: Decimal ,

epsilon: Decimal ,

start: Decimal ,

end: Decimal ,

id: int,

note=None ,

) -> FrozenUnassignedSlice:

Appendix B. Code Implementation 54

if start > end:

raise ValueError(

f"Start cannot be before end. Start {start}, end {end},

preferences {str(preferences)}"

)

values = [

de_norm(

v=get_double_prime_for_interval(

segments , epsilon , start , end, cake_size=cake_size

),

whole_cake_value=get_value_for_interval(

segments ,

to_decimal(0),

to_decimal(cake_size),

),

)

for segments in preferences

]

return FrozenUnassignedSlice(start=start , end=end, values=values

, id=id, note=note)

Listing B.10: Cut Slice.

B.6 Condition B

def _handle_adjacent(

k: int,

k_prime: int,

alpha: Decimal ,

preference_1: List[Segment],

preference_i: List[Segment],

epsilon: Decimal ,

cake_size: Decimal ,

tolerance: Decimal ,

) -> List[Decimal]:

if k, k’ = (0, 1)

0 1 2 3

[0, l] | [l, m] | [m, r] | [r, cake_size]

(3 3) 2 1

Appendix B. Code Implementation 55

if k == 0 and k_prime == 1:

r = _binary_search_right_to_left(

preference=preference_1 ,

cake_size=cake_size ,

epsilon=epsilon ,

start=to_decimal(0),

end=cake_size ,

target=alpha ,

tolerance=tolerance ,

)

m = _binary_search_right_to_left(

preference=preference_1 ,

cake_size=cake_size ,

epsilon=epsilon ,

start=to_decimal(0),

end=r,

target=alpha ,

tolerance=tolerance ,

)

l = _find_balanced_cut_for_adjacent(

preference=preference_i ,

cake_size=cake_size ,

epsilon=epsilon ,

left=to_decimal(0),

right=m,

tolerance=tolerance ,

)

return [l, m, r]

if k, k’ = (1, 2)

0 1 2 3

[0, l] | [l, m] | [m, r] | [r, cake_size]

1 (3 3) 2

elif k == 1 and k_prime == 2:

l = _binary_search_left_to_right(

preference=preference_1 ,

cake_size=cake_size ,

epsilon=epsilon ,

start=to_decimal(0),

end=cake_size ,

Appendix B. Code Implementation 56

target=alpha ,

tolerance=tolerance ,

)

r = _binary_search_right_to_left(

preference=preference_1 ,

cake_size=cake_size ,

epsilon=epsilon ,

start=l,

end=cake_size ,

target=alpha ,

tolerance=tolerance ,

)

m = _find_balanced_cut_for_adjacent(

preference=preference_i ,

cake_size=cake_size ,

epsilon=epsilon ,

left=l,

right=r,

tolerance=tolerance ,

)

return [l, m, r]

if k, k’ = (2, 3)

0 1 2 3

[0, l] | [l, m] | [m, r] | [r, cake_size]

1 2 (3 3)

elif k == 2 and k_prime == 3:

l = _binary_search_left_to_right(

preference=preference_1 ,

cake_size=cake_size ,

epsilon=epsilon ,

start=to_decimal(0),

end=to_decimal(cake_size),

target=alpha ,

tolerance=tolerance ,

)

m = _binary_search_left_to_right(

preference=preference_i ,

cake_size=cake_size ,

Appendix B. Code Implementation 57

epsilon=epsilon ,

start=l,

end=to_decimal(cake_size),

target=alpha ,

tolerance=tolerance ,

)

r = _find_balanced_cut_for_adjacent(

preference=preference_i ,

cake_size=cake_size ,

epsilon=epsilon ,

left=m,

right=to_decimal(cake_size),

tolerance=tolerance ,

)

return [l, m, r]

Listing B.11: Function to Handle Adjacent k and k
′
On Condition B

def _handle_one_between(

k: int,

k_prime: int,

alpha: Decimal ,

preference_1: List[Segment],

preference_i: List[Segment],

epsilon: Decimal ,

cake_size: Decimal ,

tolerance: Decimal = to_decimal(1e-10),

) -> List[Decimal]:

if k, k’ = (0, 2)

0 1 2 3

[0, l] | [l, m] | [m, r] | [r, cake_size]

1

give l, find m(l), where v_1([l, m(l)]) = alpha (second piece)

keep move l, making v_i([0, l]) = v_i([m(l), r])

if k == 0 and k_prime == 2:

r = _binary_search_right_to_left(

preference=preference_1 ,

cake_size=cake_size ,

epsilon=epsilon ,

start=to_decimal(0),

end=cake_size ,

Appendix B. Code Implementation 58

target=alpha ,

tolerance=tolerance ,

)

l_start = to_decimal(0)

l_end = r

l, m = _binary_search_case_0_2(

preference_1=preference_1 ,

preference_i=preference_i ,

epsilon=epsilon ,

l_start=l_start ,

l_end=l_end ,

alpha=alpha ,

cake_size=cake_size ,

tolerance=tolerance ,

)

return [l, m, r]

if k, k’ = (1, 3)

0 1 2 3

[0, l] | [l, m] | [m, r] | [r, cake_size]

1

give r, find m(r), where v_1([m(r), r]) = alpha (third piece)

= v_1([(0, l)])

keep move r, making v_i([l, m(r)]) = v_i([r, cake_size])

elif k == 1 and k_prime == 3:

l = _binary_search_left_to_right(

preference=preference_1 ,

cake_size=cake_size ,

epsilon=epsilon ,

start=to_decimal(0),

end=cake_size ,

target=alpha ,

tolerance=tolerance ,

)

r_start = to_decimal(l)

r_end = to_decimal(cake_size)

m, r = _binary_search_case_1_3(

preference_1=preference_1 ,

preference_i=preference_i ,

epsilon=epsilon ,

r_start=r_start ,

r_end=r_end ,

Appendix B. Code Implementation 59

cake_size=to_decimal(cake_size),

alpha=alpha ,

tolerance=tolerance ,

)

return [l, m, r]

else:

raise ValueError(f"_handle_one_between: Invalid k and k’, {k

=}, {k_prime=}")

Listing B.12: Function to Handle There is One Poice between k and k
′
On Condition B

60

Appendix C. Discussion 61

Appendix C

Discussion

C.1 Code Coverage Report

Figure C.1: Project Testing Converge Report

Appendix C. Discussion 62

C.2 Interactive Course

Figure C.2: Condition Handling Course Part 1

Appendix C. Discussion 63

Figure C.3: Condition Handling Course Part 2

Appendix C. Discussion 64

Figure C.4: Condition Handling Course Part 3

