
DTS311TC Final Year Project

Investigating Fair Allocation Algorithms
to Put them into Wider Use through an

Easy-to-Use Interface

In Partial Fulfillment of
the Requirements for the Degree of

Bachelor of Engineering

By

Yongteng Lei
ID: 1930236

Supervisor Name

Dr. Md Maruf Hasan

School of AI and Advanced Computing

XI’AN JIAOTONG-LIVERPOOL UNIVERSITY

April 2023

Abstract

This FYP will be devoted to investigating various algorithms for allocating a number of
indivisible items that two agents have different preferences on. In fact, the project treats
the problem of fair allocation as a social choice problem, focusing more on real-life sce-
narios than on game theory. In other words, the project treats preference information
as the real thoughts of two agents in a given scenario, regardless of individual reasons
for hiding or misrepresenting facts. Those algorithms are then applied to an easy to use
interface, in this case a web page, as a reference for solving problems in real everyday
situations, e.g., inheritance of items, distribution of surplus items, task allocation, etc.

Keywords: Fair allocation algorithms; Algorithm implementation; Web development;
User interface; Golang;

iii

Contents

Acknowledgements i

Abstract iii

Contents iv

List of Figures vii

List of Tables ix

Glossary x

1 Introduction 1

2 Preliminaries 3

3 Literature Review 5
3.1 Indivisible Goods Fair Allocation . 5

3.1.1 Divide-and-Choose (DC) . 5
3.1.2 Adjusted-Winner (AW) . 6
3.1.3 Sequential Allocation and Round-Robin (RR) 6
3.1.4 Envy-freeness (EF) . 6

3.2 Related Works . 7
3.2.1 Spliddit . 7
3.2.2 Splitwise . 8
3.2.3 Adjusted Winner Website - NYU 9
3.2.4 Fairpy . 10

4 Methodology 12
4.1 Exploration and Reflection (Theoretical Method) 12
4.2 Design and Implementation (Empirical Method) 12

iv

4.2.1 Part1: Algorithm Implementation and Test 13
4.2.2 Part2: Interfaces Design and Implementation 16

4.3 Connection between Theoretical and Empirical Methods 18

5 Experiments 19
5.1 Data Preparation . 19
5.2 Divide-and-Choose . 19

5.2.1 Pseudocode . 20
5.2.2 Optimization . 20
5.2.3 Normal Case and Similar Case 21
5.2.4 Tie-preference Case . 22
5.2.5 Overall Testing . 23

5.3 Adjusted-Winner . 24
5.3.1 Algorithm procedure . 24
5.3.2 Optimization . 24
5.3.3 Normal Case and Similar Case 25
5.3.4 Tie-preference Case . 26
5.3.5 Overall Testing . 27

5.4 Round-Robin . 28
5.4.1 Algorithm procedure . 28
5.4.2 Normal Case and Similar Case 28
5.4.3 Tie-preference Case . 29
5.4.4 Overall Testing . 30

5.5 Envy-fairness . 32
5.5.1 Algorithm procedure . 32
5.5.2 Normal Case and Similar Case 32
5.5.3 Tie-preference Case . 33
5.5.4 Overall Testing . 34

5.6 Overall Analysis . 35
5.6.1 External Testing (Fairallol Vs. Fairpy) 35
5.6.2 Internal Testing (Fairallol) . 36

6 Visualization 38
6.1 Web Interface (Welcome Page) . 38
6.2 Web Interface (Find Your Own Solution) 40
6.3 Website Robustness and User-friendliness 41

6.3.1 Friendly Reminders . 42
6.3.2 Website Robustness . 42
6.3.3 User Experience Enhancement 43

v

6.4 Terminal Application . 44

7 Limitations and Future Work 45
7.1 Limitations . 45

7.1.1 Algorithm . 45
7.1.2 User Interface . 46
7.1.3 Engineering Management . 46

7.2 Future Work . 47

8 Conclusion 49

Bibliography 53

Appendices 53

A Shallow Test Evidences 54

B Overall Analysis 56

C Hints at Find Solution Page 58

D Website Robustness Example 60

vi

List of Figures

3.1 Spliddit-A prominent fair allocation website powered by Carnegie Mellon 7
3.2 Spliddit-input-interfaces . 8
3.3 Splitwise . 9
3.4 A website showcasing Adjust Winner algorithm maintained by NYU . . . 10
3.5 Fairpy – a comprehensive set of tools and resources for fair division . . . 11

4.1 Wire frame of Fairallol . 16

5.1 Data preparation . 19
5.2 Iterate through efficiently all possible item combinations using bit-masks . 20
5.3 Overall Test for DC (Each pattern 500 test cases) 23
5.4 The idea of simulated annealing in algorithm for completeness compromise 25
5.5 Overall Test for AW (Each pattern 500 test cases) 27
5.6 Overall Test for RR (ach pattern 500 test cases) 30
5.7 Overall Test for EF1 (Each pattern 500 test cases) 34
5.8 Shallow test for Fairpy (the Same behavior as Fairallol) 35
5.9 Fairallol behaves the same as Fairpy and runs nearly three times faster. . . 35
5.10 Preference Pattern VS. Average Scores Diff (N = 5) 36
5.11 Preference Pattern VS. Time Elapsed (N = 5) 36

6.1 Awesome Welcome Page . 38
6.2 Step into fair allocation through an interesting story 39
6.3 Try the algorithm and save the friendship 39
6.4 Find your own answer and try more algorithms 40
6.5 Try more algorithms following the handy guide 40
6.6 Find a allocation step by step . 41
6.7 Hints at the Playground . 42
6.8 The front-end program ensures that item names are not duplicated 43
6.9 Random option for visitors to experience the algorithm 43
6.10 Adjustment option makes input to satisfy requirements on existing scale . 44
6.11 Get an allocation in under a minute . 44

vii

A.1 Shallow Test . 54
A.2 Shallow test for Fairpy (The Same behavior as Fairallol) 55

B.1 Overall Analysis - Pattern VS. Average Scores Diff 56
B.2 Overall Analysis - Pattern VS. Time Elapsed 57

C.1 Hints at FindSolution1 . 58
C.2 Hints at FindSolution2 . 59

D.1 Front-end application intercepts duplicate names 60

viii

List of Tables

4.1 Test Data Settings . 14
4.2 The relationship between various fairness criteria 18

5.1 Normal Case and Similar Case of DC N = 5 21
5.2 The “divider” maintains a balance between the two groups of items 21
5.3 Tie Case for DC N = 5 . 22
5.4 Testing for DC . 23
5.5 Normal Case and Similar Case of AW N = 5 25
5.6 Tie Case for AW N = 5 . 26
5.7 Testing for AW . 27
5.8 Normal Case and Similar Case of RR N = 5 28
5.9 Round Robin allocation process in Normal Case 29
5.10 Tie Case for RR N = 5 . 29
5.11 Testing for RR . 31
5.12 Normal Case and Similar Case of EF1 N = 5 32
5.13 Tie Case for EF1 N = 5 . 33
5.14 Testing for EF1 . 34

ix

Glossary

A

AW: Adjusted Winner Algorithm.

D

DC: Divide and Choose Algorithm.

E

EF: Envy-freeness. EF ensures no participant envies another’s allocation.

EF1: Envy-freeness up to one. When an agent envies someone else, but the envy can
be eliminated by removing one of other’s (most valuable) goods.

EF12: Envy-freeness up to one Algorithm.

EFx: Envy-freeness up to any items. When an agent envies someone else, but the envy
can be eliminated by removing any of other’s goods.

M

MMS: Maximin Share Guarantee.

MNW: Maximum-Nash-Welfare.

x

N

NP problem: Non-deterministic Polynomial Problem. A computational task that can be
verified in polynomial time by a deterministic algorithm.

NP-hard problem: Non-deterministic Polynomial-hard Problem. A problem that is at
least as hard as any NP problem, meaning any NP problem can be reduced to it in poly-
nomial time. NP-hard problems are considered the toughest in NP.

R

RR: Round Robin Algorithm.

xi

Chapter 1

Introduction

Fairness is what people have been pursuing in theory and practice [1]. The desire to cre-
ate allocations that satisfy both efficiency and fairness criteria based on the preferences of
the participants involved has driven the development of algorithms in this area. With the
change of time, fair division theory has been studied in mathematics, economics, political
science, computer science and other fields with different perspectives and purposes. It is
not surprising that an fair allocation of resources would have a vital position in collective
choice settings.

Allocating infinitely divisible resources fairly is difficult enough, but things become sig-
nificantly more difficult when the resources consist of a finite collection of indivisible
goods [2]. Each agent always receives a subset of resources referred to as “packs”, along
with their evaluation of these items. An allocation must be made based on the agent’s
preferences for these packs, taking into account one or more criteria for fairness and ef-
ficiency. Consider the “Two for three candy” 1 case, if there is no reasonable fairness
criterion, and no compromise by an agent, the distribution will always be a tie (there is al-
ways an agent with more candy). To demonstrate how challenging a fair item distribution
could be, we simplify the scenario by assuming that the agents’ utility are linear, with no
synergies2, and consider the “Santa Claus problem”, how to distribute a finite number of
gifts to a finite number of children, while maximizing the utility of no unhappy children?
This problem is an NP -hard problem, even if only one fairness criterion is considered.
And it is believed that there is no approximate efficient solution [3].

The distribution of items that cannot be divided into smaller parts is an important re-
search topic that cannot be overlooked. This is partly because there may not exist a “fair”

1Two agents pursue fairness in the allocation of three indivisible items
2In order to simplify the problem of allocating items, it is common to assume that all items are inde-

pendent (so they are neither substitutes nor complements).

1

distribution in such scenarios and partly because some straightforward algorithms fail due
to the indivisible nature of the items, which is a common occurrence in real-life situations.
A simple way to do this is to line up the agents, cyclically giving them the items they cur-
rently want most in order of preference. This sounds very reasonable and convincing, but
how to queue them up can be a problem. Fortunately, many talented authors have recently
proposed a variety of problem-specific allocation algorithms that satisfy certain fairness
and efficiency criteria.

This FYP will investigate the algorithms and concepts of fair allocation, while considering
the possibilities of implementation, and transforming them into an easy-to-use interface
that can be used as a reference for everyday allocation problems. [4] [5] [6] [7] [8].

2

Chapter 2

Preliminaries

The FYP will focus on the setting of fair allocation of indivisible goods. Consider a fair
allocation problem entity E = (v,M,N). M is the set of goods m, which may contain
only indivisible goods. N is the set of n agents. v = (v1, v2, v3, · · · , vn) is a non-negative
additive valuations vector, with agent i ∈ N for set S ⊆ M being vi(S) =

∑
j∈S vi(j),

where vi(j) denotes the set of agents i for valuation of good j ∈ M , S are partitions of
the goods into n packs. The work is to try to assign |M | goods to |N | agents fairly in this
entity E according to the corresponding fairness criteria, popularly known as MMS, PFS
and envy-free etc.

Definition 1 (Maximin share guarantee). The MMS guarantee of agent i ∈ N is

MMS(i) = max
S1,··· ,Sn

min
j∈N

vi(Sj)

This means that the agent will divide the goods into n packs, and he will get the most
desired but the least bundle. It is worth noting that maximin share allocation (which guar-
antees that every agent gets a share of his / her MMS) may not always exist. Fortunately,
however, Procaccia and Wang [9] proved that at least (2

3
)-approximation maximin share

allocation (each agent will get 2
3

of his/her MMS) is always available.

Definition 2 (Proportional fair-share). The PFS guarantee of agent i ∈ N is 1
n

of his or

she utility from the entire goods set M , namely PFS = vi(M)
|N | . A proportional allocation

is that for each agent in N , have:

vi(Si) ≥
vi(M)

n

Each agent receives a PFS of (total value / n). It is worth noting that PFS allocation
always implies MMS if every agent with superadditive utility[10].

3

Definition 3 (Envy-freeness). EF indicates that all agents weakly prefer their own bundle

over others, have

vi(Si) ≥ α ∗ vi(Sj)

for two agent i and j, where α ∈ (0, 1]

When α = 1, so called EF.

Definition 4 (Envy-freeness-except-1). When agent i envies j, but the envy is eliminated

by removing one of j’s (most valuable) goods, then EF1, have

vi(Si) ≥ α ∗ vi(Sj \ g)

for two agent i and j, where α ∈ (0, 1], and the “\” symbol represents remove a good g

from packs Sj

When α = 1, so called EF1. EF1 is weaker than EF, and the Maximum Nash Welfare
algorithm is both EF1 and Pareto-efficient [11].

Definition 5 (envy-free up to at most any item). When agent i envies j, but the envy is

eliminated by removing one of j’s (least valuable) goods, then EFx, have

vi(Si) ≥ α ∗ vi(Sjng)

for two agent i and j, where α ∈ (0, 1]

When α = 1, the allocation criterion is referred to as EFx. Although EFx is weaker
than EF, it is strictly more demanding than EF1. In terms of fairness, EFx can be con-
sidered more reasonable than EF1; however, it is also harder to achieve. The general
availability of EFx allocation remains an open question, and the minimum number of
agents required in cases with additive valuations is four [12].

The allocation of an entity E as v = (∅, ∅, · · · , ∅) still satisfies EF, EFx, and EF1. How-
ever, making all items M a charity does not make any sense to the agent, although no one
would be envy of a charity set [13]. Obviously, we also need some efficiency metrics built
on top of pure envy-free.

Definition 6 (Pareto efficient). Pareto efficiency or Pareto optimality (PO) is the case

where there is no alternative allocation v’ such that vi(Si′) ≥ vi(Si), for all i ∈ N .

In other words, there is no PO allocation in which an agent i ∈ N can improve his or
her value without affecting the value of others.

These preliminaries will always be in mind, and will serve as the basis for exploring
and implementing fair allocation algorithms.

4

Chapter 3

Literature Review

As mentioned earlier, the main concern of FYP is the fair allocation of indivisible goods
(The goods will be treated as a whole and cannot be divided into multiple parts), in addi-
tion, some websites that are available for fair allocation are also mentioned in this section.

3.1 Indivisible Goods Fair Allocation

When things turn out to be indivisible, there is no guarantee of exact envy-free and fair
notions. Therefore, fair relaxations are presented, such as EF1, EFx, MMS, etc., which
define “certain” equilibria [11] [14] [15] . There have been too many valid and versatile
algorithms proposed by many computer scientists, but here are some of the most com-
monly used and powerful ones, which are also the basis of algorithms in more complex
settings.

3.1.1 Divide-and-Choose (DC)

Divide-and-Choose is one of the most classical assignment algorithms, and in the case of
only two agents, the process is intuitive and efficient. The first agent has the power to
divide the items into groups, and the second agent will choose, so the most efficient and
fair way to divide is for the first agent to maximize the value of each group as much
as possible to ensure that he or she also reaps the maximum benefit. MMS and always
hold for the first agent if it maximizes the smaller group in (X1, X2), and EF is valid for
the second agent because he or she gets the preferred group from (X1, X2). This has been
proven by Plaut and Roughgarden [16].

5

3.1.2 Adjusted-Winner (AW)

Another widely used allocation algorithm for two-agent scenarios is Adjusted-Winner.
The algorithm dynamically adjusts the two-agent evaluation of items depending on the
obtained utility [17]. EF1 is always present for the first agent to start allocating the item.
This algorithm guarantees the highest possible social welfare between the two agents, but
does not necessarily fulfill MMS or EFx [18].

3.1.3 Sequential Allocation and Round-Robin (RR)

Another class of fair allocation algorithms that can be implemented efficiently is Sequen-
tial Allocation, also known as sequential-picking, where people pick their favorite items
in a certain order that remains valid [17]. The Round-Robin algorithm is one of the most
popular sequential algorithms, which repeats a sequential pattern 1...n, for indivisible
items and chores (but not a mixture of them) to guarantee EF1, but EFx may not always
exist. Aziz et al [19]. proposed a double Round-Robin solution for the mixing of indi-
visible items and chores. Amanatidis et al. [20] and Aziz et al. [21] approximated MMS
fairness by a sequential algorithm.

3.1.4 Envy-freeness (EF)

Envy-free (EF) is an idealized fairness criterion that requires the allocation of things to
each participant in such a way that they do not envy the allocation of others. Even with a
small number of participants and products, achieving this level of fairness is notoriously
difficult [4][22]. Early contributions in this field include Stromquist’s [23] investigation
of the housing allocation problem and Varian’s [24] study on fair division in economics.

Researchers have developed more practical fairness criteria, such as EF1 and EFx, in
response to the limitations of EF. EF1 requires that each participant’s item allocation be
such that they do not overly envy another participant’s allocation [11]. This requirement
is reasonably simple to meet and is deemed enough in many situations. In indivisible
item allocation, Plaut and Roughgarden [16] suggested a polynomial-time technique to
achieve EF1. Considering the criterion EFx, which is stronger than EF1 but not EF hard
to achieve, the participants are required not to envy the allocation of others by removing
any of the items, however, the widespread availability of EFx is still an open issue [12].

6

3.2 Related Works

3.2.1 Spliddit

Caragiannis et al [11]. have shown a clever way convert a divisible problem related al-
gorithm MNWs (Maximum-Nash-Welfare) into an indivisible one, and they proved that
MNWs still imply a certain EF1 as well as MMS in the indivisible setting. Finally they
found that an MNW is an APX-hard, a NP optimization problem, in this scenario, and to
do so they devised a special trick, giving each agent 1000 points, and using a polynomi-
ally reducible function to overcome this difficulty. Lastly, they used this algorithm as the
underlying implementation of the Spliddit website (Fig. 3.1).

Fig. 3.1: Spliddit-A prominent fair allocation website powered by Carnegie Mellon

Spliddit was designed to address three specific fair allocation issues: Splitting rent, divid-
ing goods, and sharing credit. Each problem type has detailed explanations and links to
educational articles as well as demos. But it is currently out of service.

7

(a) Spliddit-goods-input-interface (b) Spliddit-rent-input-interface

(c) Spliddit-tasks-input-interface

Fig. 3.2: Spliddit-input-interfaces

For the goods allocation task, participants are given 1000 points each to indicate their pref-
erence for the given goods. The algorithm works on these points, regardless of whether it
is based on ordinal utility 1 or cardinal utility 2.

The same thing happens in rent allocation, the difference is that the total number of points
is the total amount of rent, and the participants give different offers for different facilities
depending on their preferences.

In Spliddit task assignments, multiple users are required to collaborate on a task and each
user provides an input signal that is used to compute the result of the task. When multiple
users submit input signals, these signals are encoded and selected using a multiplexer,
resulting in a combined signal that can be passed to the task algorithm for computation.

3.2.2 Splitwise

The Splitwise Rent Calculator is also a web-based tool that simplifies rent division among
roommates, promoting fairness in shared housing situations, which is based on the fair-
ness principles of Nobel Prize-winning economist Alvin Roth, needs users to submit total
rent, number of roommates, and room attributes. The rent is then allocated using an iter-
ative process that modifies the rent for each room until all parties agree on the allocation.

1Ordinal utility focuses on relative rankings of goods combinations that represent customer preferences,

taking just order into account.
2Cardinal utility provides numerical values to preferences, offering quantitative comparisons and cal-

culations of satisfaction levels.

8

(a) Splitwise step1 (b) Splitwise step2

(c) Splitwise step3 (d) Splitwise result

Fig. 3.3: Splitwise

Spliddit completes the survey of participants’ preferences for goods by assigning points,
providing great scalability to accommodate both ordinal utility and cardinal utility based
algorithms. The simple yet aesthetically attractive interface of the Splitwise Rent Calcu-
lator was also an inspiration for web design.

3.2.3 Adjusted Winner Website - NYU

Another website (Fig.3.4), maintained by New York University, demonstrates the process
of the Adjusted Winner (AW) algorithm, proposed by Steven J. Brams and Alan D. Dedi-
cated to distribute n divisible items between two participants as fairly as possible [4]. The
website also provides some background information on the mathematics of fair alloca-
tion, as well as a venue to try out custom data. Although it focuses on divisible items, its
pedagogical approach coincides with the expected results of this FYP, providing a refer-
ence for fair allocation tasks while offering a general understanding of how the algorithm
achieves fairness.

9

Fig. 3.4: A website showcasing Adjust Winner algorithm maintained by NYU

3.2.4 Fairpy

Fairpy 3 is a Python-based library of fair allocation algorithms, aiming to provide a variety
of fair solutions for allocation problems. The library covers several important concepts
of fair allocation, including envy-freeness, proportionality, and equitability. It provides
a wide range of algorithms for different situations, such as divisible and non-divisible
goods, and situations with or without monetary transfers.

Fairpy is designed to be user-friendly, providing clear documentation and examples to
facilitate implementation. Researchers, economists, and developers can use the library to
explore, analyze, and solve fairness-related problems in a variety of applications, such as
resource allocation, scheduling, and collaborative decision-making.

By providing a comprehensive set of tools and resources for Fair division, Fairpy con-
tributes to the ongoing discussion around fairness and equity in both academic and prac-
tical contexts.

3Find Fairpy at https://github.com/erelsgl/fairpy

10

Fig. 3.5: Fairpy – a comprehensive set of tools and resources for fair division

Thanks to such user-friendly interfaces, robust algorithms, and the foundation of eco-
nomic principles, they are a valuable reference in the field of shared resources and fi-
nancial management. This FYP will focus on exploring the four widely used ideas and
methods mentioned above (DC, AW, RR, EF) as a service with an innovative, easy-to-use,
and heuristic website to awaken public awareness of fair allocation and to provide some
realistic convenience in life.

11

Chapter 4

Methodology

4.1 Exploration and Reflection (Theoretical Method)

Fair allocation is a multifaceted topic that spans across various disciplines, including eco-
nomics, game theory, mathematics, and computer science. Each field tackles unique chal-
lenges and approaches solutions in diverse ways to address the issue of different settings.

In order to gain a deep understanding of the problem, a thorough literature review, along
with proof and application scenario research, is essential to validate the working pro-
cess of algorithms. In addition, exploring existing interfaces on the web, such as highly
validated and popular blogs and websites, can provide valuable insights for easy-to-
understand explanatory content and user-friendly features.

4.2 Design and Implementation (Empirical Method)

This FYP consists of two main parts, namely algorithm exploration and interface imple-
mentation. The algorithm section focuses on exploring four widely used algorithms (DC,
AW, RR, EF) and trying to implement and test the corresponding allocation behavior us-
ing Go language. (There is no pioneer of fair allocation in Go language so far).

For the interface implementation part, there are two accessible ways, namely web-based
and terminal applet. The web-based interface aims to create an innovative, eye-catching,
easy-to-use, educational fair allocation solution, with strong guidance and robust func-
tionality. The terminal applet is focused on reachability (depending on the features of the
terminal, not everyone will be able to use it, but it is always ready to go).

12

4.2.1 Part1: Algorithm Implementation and Test

Algorithm implementation and innovation

The four selected algorithms are implemented in Go, with DC and RR reproducing the
classical implementation. For both AW and EF, their ideas will be taken into account as
a basis for implementing two more realistic algorithms, albeit at a kind of compromise of
some strict fairness.

Algorithm evaluation criteria

After an in-depth literature review, several algorithms suitable for exploration and im-
plementation at the undergraduate level should be picked and tested for performance in
several aspects.

• Completeness: Whether the algorithm is able to allocate all goods to all partici-
pants.

• Fairness 1: The differences in utility obtained by participants after allocation.

• Efficiency: Run time, and number of steps required to complete the allocation.

Algorithm input pattern

In addition, different algorithms may be picky about their inputs. The tests will also
consider the performance from 3 different input patterns, to ensure that the algorithm is
implemented with some general adaptability.

• Normal. All participants have a normal 2 evaluation of the items, and preferences
are not approximately the same.

• Similar. All participants have approximately the same preference for items.

• Tie. All participants have the same preference for items.

Test data preparation

To test the algorithm’s performance in equitable allocation cases, it is important to have
real-world data, such as the allocation of excess communal goods for the dormitory, di-
vorce asset division, household chores allocation, etc. However, in the absence of such

1Different algorithms treat fairness differently, and the differences may even have a large gap. Here it

is evaluated by the difference between the utility values obtained between participants after allocation.
2Participants independently evaluated the items according to their own preferences, and the evaluations

were authentic and free of deception.

13

data, simulating different scenarios can be a useful alternative to help to evaluate the al-
gorithm’s effectiveness. The following test data can be prepared:

• Generate an exhaustive series of N numbers such that the sum is 100 using the
program. Choose N values of 4, 5, and 6 (Generating data for 7 evaluations requires
more than 32G of memory support). Randomly select 1000 data entries from each
series, and test each pair of entries as a set of data for the algorithm. This creates
500 test cases. Simulate the input mode as Normal.

• Repeat the above process but ensure that every 10 data entries have similar prefer-
ences. This will create 500 test cases but contain 100 similar patterns as a set of
data for the algorithm. Simulate the input pattern as Similar.

• Randomly select 500 data entries and share each data to two participants. This
creates 500 test cases, and each participant has an equal claim to goods. Simulate
the input pattern as Tie.

Table 4.1: Test Data Settings

Explanation / Input Pattern Normal Similar Tie

Generated 1000 1000 500

Pair as a case True True False

Similarity False Every 10 data False

Test cases 500 500 500

By simulating these scenarios, it is possible to test the algorithm’s effectiveness in differ-
ent situations and evaluate its performance.

Overall Analysis

External Testing Analysis with Fairpy After all the algorithms have been implemented
and tested, an external test of Fairpy and Fairallol will be carried out to verify two main
aspects.

• Whether the same algorithm yields consistent behavior.

• Efficiency comparison (Runtime).

14

Internal Testing Analysis In addition, a comparative efficiency analysis will be per-
formed within Fairallol using the aspects defined by section 4.2.1 to evaluate the pros and
cons of the algorithms implemented and to derive a general summary.

15

4.2.2 Part2: Interfaces Design and Implementation

Web Interface Design

Fig. 4.1: Wire frame of Fairallol

16

Technology used in the website Fairallol

The name of the website is Fairallol3, be built using the Vue framework, with technologies
such as HTML, CSS, JavaScript. Bootstrap5 is used as the component library to glorify
the website, and NerdFonts Icon provides some adorable icons. Axios sends requests to
communicate with the back-end server, receives responses and handles errors.

The backend service is written in the Go language web framework Gin, two replicated
classical implementations (DC and RR) and two algorithms based on AW and EF are
used as services.

All front-end and back-end codes was produced by the author. 4 5

Website Content Design

Fairallol is designed as a new generation of innovative fair allocation website. Its interface
is interactive, engaging, and educational. The website attempts to use vivid examples and
interaction with participants to awaken their thinking and understanding of fair allocation
issues, and to provide practical convenience in their lives.

Therefore, Fairallol’s content is well designed, easy-to-read, engaging and inspiring, with
easy-to-understand explanations of each algorithm in a beginner-friendly manner, and a
corresponding playground for visitors to play with. At the same time, the functionality is
robust and the user experience is user-friendly.

Evaluation

• Examine whether it contains a complete proof and the necessary explanation.

• Create an implementation analysis of the method and evaluate its usefulness.

• Analyze the web’s usability and operation. (Is it bug-free and easy to use)

Minor Testing

A small pre-launch test should be conducted before the Fairallol is released, and the web-
site should be distributed to a small group of people to test the robustness, functionality,
and ease of use of the UI, etc.

3Fair Allocation LOL
4For front-end code, please move to: https://github.com/yongtenglei/fairallol
5For the back-end code, please move to: https://github.com/yongtenglei/fairallol server

17

4.3 Connection between Theoretical and Empirical Meth-

ods

The process of achieving fair allocation for indivisible goods is full of challenges. A
comprehensive literature review is essential since it allows for the picking and implemen-
tation of appropriate algorithms without focusing too much on strict proofs or digging into
major application settings. The interrelationships of multiple fairness principles, such as
Envy-Free (EF), Envy-Free up to any goods (EFx), Envy-Free up to one good (EF1),
and Proportionality up to One Good (Prop1), can be properly understood by thoroughly
investigating them (Table. 4.2).

Table 4.2: The relationship between various fairness criteria

Existence Computation

Without PO With PO Without PO With PO

EF No No NP-hard NP-hard

EFx Open Open Open Open

EF1 Yes Yes Polytime Open

Prop1 Yes Yes Polytime Polytime

This comprehensive examination of fairness principles not only reduces overall workload
but also provides significant insights into the specific criteria met by each deployed algo-
rithm. As a result, the investigator can focus more effectively on improving algorithms
and assessing their effectiveness. The improved understanding of fairness criteria result-
ing from the literature research serves as a foundation for future algorithmic develop-
ment and guarantees that the fairness criteria are appropriately reflected in the approaches
adopted.

18

Chapter 5

Experiments

5.1 Data Preparation

As mentioned earlier, since the real data are absent, complete simulated data will be used
to test the algorithm (in fact, this provides a wider coverage than the real data). Please
refer to section 4.2.1 for the procedure to generate the data.

Use Python to generate the data and store it as a plain text file for reading by the Go
language test program.

(a) 4 Normal partial (b) 5 Similar partial (c) 6 Tie partial

Fig. 5.1: Data preparation

5.2 Divide-and-Choose

The Divide and Choose algorithm is a sensible and intuitive method for allocating indivis-
ible items between two agents. The “divider,” a single agent, divides the things into two
groups based on its valuations. The other agent, the “chooser,” then chooses its preferred
group, leaving the remaining group to the divider. This method ensures envy-freeness,
as the chooser gets the group they value most, while the divider, who made the par-

19

tition, believes both groups are basically equal valuable. Divide and Choose is very
beneficial in resolving disputes and allocating resources since it ensures a fair solution for
both parties.

5.2.1 Pseudocode

1. First randomly divide the two participants into “divider” and “chooser”.

2. The only way to ensure maximum utility is for the “divider” to allocate the two
groups as evenly as possible.

3. Uses bit-masking to efficiently traverse all cases and divide the items into the best
group A and the best group B.

4. The “chooser” chooses the group with the greatest utility to itself, leaving the other
part to the “divider”.

5.2.2 Optimization

Fig. 5.2: Iterate through efficiently all possible item combinations using bit-masks

The algorithm uses bit masks to perform bitwise operations to combine the possibilities of
all item combinations, which is one of the fastest implementations and greatly improves
the performance of the algorithm.

20

5.2.3 Normal Case and Similar Case

Table 5.1: Normal Case and Similar Case of DC N = 5

Normal Case (DC) Similar Case (DC)

Item1 Item2 Item3 Item4 Item5 Utility Item1 Item2 Item3 Item4 Item5 Utility

Alice 12 37 16 22 13 50 1 26 30 31 12 44

Bob 2 17 27 16 38 55 1 25 38 18 18 63

As in the algorithm procedure, the algorithm averages the utility of the two groups as
much as possible by means of a bit-masking operation. Using the case of 5 items as a
demonstration, it can be observed that the algorithm can always find the item with the
lowest utility and add it to the otherwise relatively inferior side.

Table 5.2: The “divider” maintains a balance between the two groups of items

Divide And Choose (DC)

Utility of two groups of items (Alice’s perspective) in Normal Case

Items Item1 Item2 Item3 Item4 Item5 Utility Gained

Group1 12 0 16 22 0 50

Group2 0 37 0 0 13 50

Difference 0

In the Normal Case example, the algorithm appoints Alice as “Divider” and divides the
items into two groups as evenly as possible from its own viewpoint, so that the difference
in utility between the two groups is as small as possible (after a bitmask operation, the
difference in utility between the two groups is 0 in this example). Then “Selector” Bob
chooses the part it prefers.

21

5.2.4 Tie-preference Case

Table 5.3: Tie Case for DC N = 5

Tie Case (DC)

Item1 Item2 Item3 Item4 Item5 Utility

Alice 5 5 15 14 61 39

Bob 5 5 15 14 61 61

The algorithm seems to have encountered a strong challenger. Not only does it encounter
the exact same preference input, but it also encounters an item that has an overwhelming
advantage over other items. However, DC does a good job of not sticking to an average in
the number of items allocated, but rather an average in value, which makes sense in this
respect.

Shallow test evidence see Appendix A.1(a)

22

5.2.5 Overall Testing

Fig. 5.3: Overall Test for DC (Each pattern 500 test cases)

Table 5.4: Testing for DC

Divide And Choose (DC)

N 4 5 6

Pattern Normal Similar Tie Normal Similar Tie Normal Similar Tie

Avg. Scorediff 20.26 19.12 19.62 20.98 17.85 21.01 19.90 17.45 19.01

Avg. Goodsdiff 1.16 1.15 1.12 1.70 1.72 1.71 1.76 1.72 1.60

Time Elapsed 8.732474ms 10.143776ms 2.517454ms 11.07734ms 10.768934ms 5.192414ms 25.108888ms 27.226924ms 12.288562ms

The algorithm was evaluated, by three different N, and three different input preference
patterns, by 500 test cases, to obtain the above charts. These charts will be discussed in
detail as evidence in Section.5.6.2.

23

5.3 Adjusted-Winner

The Adjusted Winner algorithm is commonly used in the fair allocation of indivisible
items. This algorithm seeks to allocate limited resources to participants while satisfying
fairness principles as much as possible. This is achieved by assigning items to participants
based on the value of the winner, which is determined by their relative preference for
the items. To ensure fairness, the algorithm uses an adjustment factor that reflects the
impact of the assigned items on the remaining participants and adjusts their valuations
accordingly. In this implementation

af = adjusted factor = sum of points / number of agents.

And,

adjusted valuation -= af * the number of items this participant has been (pre)-allocated.

This algorithm guarantees two fairness principles: “independence” and “envy-freeness”.
Independence means that the algorithm recalculates each participant’s score and each
item’s valuation before each allocation and adjusts each participant’s score after each al-
location based on the effect of the allocated items on the remaining participants. Fairness
is ensured in the final allocation always implies that no other participant’s allocation has
a higher utility than their existing allocation. In other words, no one is envious of others.

5.3.1 Algorithm procedure

1. Calculate the adjusted factor.

2. Allocate each item to a participant based on the evaluations adjusted by the adjusted
factor.

3. Check if the allocations are envy-free, if yes, the allocation is finished and the PO
is satisfied as much as possible. If no, go to the next step.

4. Unallocate all items that have been assigned to participants who failed the envy-free
check, and proceed to the allocation phase again.

5.3.2 Optimization

Unfortunately, AW does not always find a fair allocation if a fixed adjustment factor is
used. This implementation borrows the idea of simulated annealing, so that after a certain
number of iterations, the adjustment factor is still not found to be allocated, and then a
small adjustment is made to achieve algorithmic completeness (all items should be allo-
cated to all participants), which is an algorithmic compromise.

24

Fig. 5.4: The idea of simulated annealing in algorithm for completeness compromise

The use of a shuffling mechanism also helps to avoid possible biases in the allocation
process.

5.3.3 Normal Case and Similar Case

Table 5.5: Normal Case and Similar Case of AW N = 5

Normal Case (AW) Similar Case (AW)

Item1 Item2 Item3 Item4 Item5 Utility Item1 Item2 Item3 Item4 Item5 Utility

Alice 12 37 16 22 13 71 1 26 30 31 12 58

Bob 2 17 27 16 38 65 1 25 38 18 18 56

In normal preference pattern as well as in similar preference pattern, AW can work appro-
priately. Even achieved a greater social welfare 1 than DC . The algorithm first allocates

1social welfare here means the sum of utility obtained by all participants

25

items to participants according to their highest valuation (satisfying PO as much as pos-
sible), and then checks whether the allocation is envy-free, and ends the allocation when
everyone is not envy of others’ allocation.

5.3.4 Tie-preference Case

Table 5.6: Tie Case for AW N = 5

Tie Case (AW)

Item1 Item2 Item3 Item4 Item5 Utility

Alice 5 5 15 14 61 75

Bob 5 5 15 14 61 25

When it comes to preferences for Tie pattern, Adjusted Winner (AW) algorithm may en-
counter some difficulties compared to other algorithms such as DC. AW assigns items
to participants based on their highest evaluation, but it faces a Tie input pattern, and can
only temporarily assign participants in a certain order. The envy-free process may also
get stuck in a “hard-to-break-through situation” if a fixed adjustment factor is used. To
ensure algorithmic completeness, the algorithm enters an annealing phase after a certain
iteration threshold is reached, where the adjustment factor decreases progressively and the
deadlock begins to break. However, during this phase, the allocation can become random
and really dependent on the participants’ evaluation of the items. Therefore, AW may not
be as effective as DC when it comes to handling preferences for Tie pattern.

Shallow test evidence see Appendix A.1(b)

26

5.3.5 Overall Testing

Fig. 5.5: Overall Test for AW (Each pattern 500 test cases)

Table 5.7: Testing for AW

Adjusted Winner (AW)

N 4 5 6

Pattern Normal Similar Tie Normal Similar Tie Normal Similar Tie

Avg. Scorediff 23.46 30.75 24.73 24.60 30.71 27.45 20.88 22.83 21.22

Avg. Goodsdiff 0.05 0.02 0.15 1.00 1.00 1.00 0.07 0.02 0.09

Time Elapsed 59.941853ms 15.283481ms 51.420044ms 48.398528ms 29.986243ms 24.753526ms 117.58782ms 76.304055ms 52.306141ms

The algorithm was evaluated, by three different N, and three different input preference
patterns, by 500 test cases, to obtain the above charts. These charts will be discussed in
detail as evidence in Section.5.6.2.

27

5.4 Round-Robin

The Round Robin (RR) algorithm is another widely used algorithm for the allocation
of indivisible goods. The core idea is to achieve fair allocation by circularly allocating
an item to each participant in a predetermined order. Specifically, the algorithm iterates
through the participants in a loop and allocates the most preferred items as possible ac-
cording to the participants’ evaluations. Since participants receive at least one item in
each loop, it is easy to balance the number of items allocated.

The RR algorithm naturally satisfies EF1 because the algorithm works in such a way
that each participant is allocated an item that is at most one worse than the one that is
preferred less. Similarly, it also satisfies independence, as the allocation of items de-
pends only on the participants’ evaluation of the items and the sequencing mechanism,
independent of the behavior of other participants.

5.4.1 Algorithm procedure

1. Queue participants in a certain order or shuffle them.

2. Iterate participants in order and allocate their favorite item as much as possible.

3. Continue until all items have been allocated. This allocation is independent and
EF1.

5.4.2 Normal Case and Similar Case

Table 5.8: Normal Case and Similar Case of RR N = 5

Normal Case (RR) Similar Case (RR)

Item1 Item2 Item3 Item4 Item5 Utility Item1 Item2 Item3 Item4 Item5 Utility

Alice 12 37 16 22 13 71 1 26 30 31 12 58

Bob 2 17 27 16 38 65 1 25 38 18 18 56

It is very easy to see that the order starts with Alice, then each person is assigned their
current favored item, until all items are allocated.

28

Table 5.9: Round Robin allocation process in Normal Case

Rround Robin (RR)

Items Item1 Item2 Item3 Item4 Item5 Participator

1 37 Alice

2 38 Bob

3 37 22 Alice

4 27 38 Bob

5 12 37 22 Alice

Again using the Normal Case as an example, the algorithm starts with Alice (in fact the
order is random, Bob may need more luck), choosing the unassigned item that he likes
best. Then it’s Bob’s turn to choose, and so on... until all items have been allocated to all
participants.

5.4.3 Tie-preference Case

Table 5.10: Tie Case for RR N = 5

Tie Case (RR)

Item1 Item2 Item3 Item4 Item5 Utility

Alice 5 5 15 14 61 80

Bob 5 5 15 14 61 20

Similarly, RR, like AW, does not take the Tie input pattern well into account for DC.
When in a Tie input pattern, the first participant to be allocated will have a huge advan-
tage, since it will always have access to the item that is acknowledged to be the most
valuable. If this most valuable item has an overwhelming dominance in the evaluation,

29

for example, a house versus a pile of miscellaneous items, using RR will result in the first
assigned participant gaining an absolute numerical lead. Certainly, such a setting would
never be possible in real life using the RR algorithm.

Shallow test evidence see Appendix A.1(c)

5.4.4 Overall Testing

Fig. 5.6: Overall Test for RR (ach pattern 500 test cases)

30

Table 5.11: Testing for RR

Round Robin (RR)

N 4 5 6

Pattern Normal Similar Tie Normal Similar Tie Normal Similar Tie

Avg. Scorediff 19.15 27.07 31.34 20.47 25.57 29.80 15.36 19.46 24.96

Avg. Goodsdiff 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

Time Elapsed 1.474912ms 1.201002ms 1.636466ms 2.221386ms 2.911443ms 1.991294ms 3.082858ms 3.014712ms 3.434005ms

The algorithm was evaluated, by three different N, and three different input preference
patterns, by 500 test cases, to obtain the above charts. These charts will be discussed in
detail as evidence in Section.5.6.2.

31

5.5 Envy-fairness

The Envy-Free up to one item (EF1) algorithm is a compromise of Envy-Free (EF). This
means that when a envy occurs, the envy disappears after the envied person removes an
item, and such a scenario is still considered to satisfy an envy-free, namely EF1.

This implementation is one that takes into account the EF1 idea, but is more realistic.
By keeping track of the number of items allocated to two participants, when either party
has more than two items than the other, the items need to be exchanged to achieve fair-
ness. Like the AW algorithm, the initial allocation will be based on the highest evaluation
of the items to the corresponding participant, but it should be noted that this algorithm
tends to maintain a balance in the number of items allocated, which is not quite the same
as AW.

5.5.1 Algorithm procedure

1. Items are allocated to participants according to their highest evaluations.

2. When preferences are the same, allocate to the participant who has received fewer
items so far.

3. When any participant receives two more items, a shift is triggered to ensure balance.

4. The weaker participant takes the most preferred item of the dominant participant,
or if not, takes the least valuable item of the dominant participant.

5.5.2 Normal Case and Similar Case

Table 5.12: Normal Case and Similar Case of EF1 N = 5

Normal Case (EF1) Similar Case (EF1)

Item1 Item2 Item3 Item4 Item5 Utility Item1 Item2 Item3 Item4 Item5 Utility

Alice 12 37 16 22 13 71 1 26 30 31 12 58

Bob 2 17 27 16 38 65 1 25 38 18 18 56

32

5.5.3 Tie-preference Case

Table 5.13: Tie Case for EF1 N = 5

Tie Case (EF1)

Item1 Item2 Item3 Item4 Item5 Utility

Alice 5 5 15 14 61 81

Bob 5 5 15 14 61 19

In this implementation of the EF1 algorithm, the algorithm tries to balance the number of
allocations to try to find the optimal allocation in the face of the three patterns of pref-
erences. There are two layers of safeguards here, when allocating items with the largest
evaluation of the item, if more than one participants have the same evaluation, preference
is given to the participant who has received the fewest items so far. In addition, if a partic-
ipant receives too many items, a transfer will be triggered to maintain the balance. Before
triggering the transfer, this algorithm can be considered as a greedy algorithm that seeks
to achieve maximum PO, and after triggering the transfer, this EF1 fairness criterion is
guaranteed.

Shallow test evidence see Appendix A.1(d)

33

5.5.4 Overall Testing

Fig. 5.7: Overall Test for EF1 (Each pattern 500 test cases)

Table 5.14: Testing for EF1

Envy-fairness (EF1)

N 4 5 6

Pattern Normal Similar Tie Normal Similar Tie Normal Similar Tie

Avg. ScoreDiff 20.03 29.76 19.61 20.36 27.71 22.27 16.30 22.28 16.05

Avg. GoodsDiff 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00

Time Elapsed 3.452247ms 3.218606ms 1.371437ms 3.877644ms 2.510686ms 1.188571ms 3.011717ms 3.505614ms 2.104929ms

The algorithm was evaluated, by three different N, and three different input preference
patterns, by 500 test cases, to obtain the above charts. These charts will be discussed in
detail as evidence in Section.5.6.2.

34

5.6 Overall Analysis

5.6.1 External Testing (Fairallol Vs. Fairpy)

In external tests, Fairallol will be tested with Fairpy in both shallow and in-depth tests,
using the Round Robin algorithm. In the shallow test, it is used to verify that the behavior
of the two fair allocation libraries is consistent.

Fig. 5.8: Shallow test for Fairpy (the Same behavior as Fairallol)

In the deep tests, Fairpy will be tested with the same set of measures as Fairallol, but with
a single focus on the runtime metric (since the behavior of both libraries is consistent
regrading to RR algorithm)

Fig. 5.9: Fairallol behaves the same as Fairpy and runs nearly three times faster.

Evidence of in-depth tests for Fairpy see Appendix A.2

35

After testing Fairpy with the same test set as Fairallol (each preference input pattern
with 500 cases). It is found that Fairallol not only has the same behavior as Fairpy,
but also has a speedup of nearly 3 times.

5.6.2 Internal Testing (Fairallol)

Fig. 5.10: Preference Pattern VS. Average Scores Diff (N = 5)

Fig. 5.11: Preference Pattern VS. Time Elapsed (N = 5)

For more evidence, please refer to Appendix B

The Round Robin algorithm can be conceived as the simplest but also has additional
realistic implications as a fairness algorithm. The simplicity of the implementation al-
lows it to have essentially the highest running efficiency, and to imply certain fairness
criteria EF1 , etc. However, it is worth noting that RR’s allocation prefers its own mecha-
nism rather than the settings with the allocated items or the evaluation of the items by the
participants, leading it to fall short of the fairness criteria when dealing with non-general
patterns of preferences (Similar and Tie). The other three algorithms, on the other hand,

36

suffer from a certain amount of confusion in the Similar pattern.

Adjusted Winner (AW) seems to have the worst performance, the most time consum-
ing and the difference in the obtained utility seems to be large. The reason for the long
time consumption may be due to the fact that a fixed adjustment factor is used upfront,
and if a reasonable allocation is not achieved in the first few attempts, the algorithm must
iterate to a certain threshold before the adjustment factor is annealed, which is not easy
to determine, and in the current implementation, it is hard-coded to simulate annealing at
n=1000. This value may not be applicable in the test set. The reason for the large error
may be that AW really considers envy-free in some other sense, rather than minimizing
the difference between the values of the allocated items, and all the final allocations it
produced are envy-free, which is missing in some implemented algorithms.

EF1 does not seem very bad, but in fact it is a greedy algorithm most of the time. Al-
though the EF1 algorithm guarantees that each participant will receive one of his or her
favorite items, it does not guarantee that the allocation is Pareto optimal. This is because
the EF1 algorithm only considers the individual preferences of each participant, and does
not consider the efficiency and overall welfare of the entire allocation scheme. Therefore,
even if each participant is satisfied under the EF1 algorithm, the overall allocation scheme
may not be optimal for all participants. Therefore, in practical applications, it is necessary
to choose the appropriate fairness criterion for the allocation of indivisible items accord-
ing to the specific situation.

Compared to the EF1 algorithm, the Divide And Choose (DC) algorithm is more global
in nature and its idea is very simple yet useful. If there are only two participants involved
in allocating items fairly, then the simplest and most effective way is “you divide and
I choose”. To maximize the benefits for both parties or to achieve fairness, the divider
should keep the items in both groups as even as possible, because the chooser will in-
evitably choose the better group. The Divide And Choose algorithm is a fair and effective
way to divide indivisible goods between two participants, and its simplicity makes it easy
to understand and implement in real-life scenarios. However, it may not be applicable
when there are more than two participants involved, or when the participants’ preferences
are not well-defined. Fortunately, this is exactly the topic of this FYP.

In summary, among the four algorithms implemented, DC should be the most efficient,
easy to understand, and easy to implement fair allocation algorithm in the context of the
problem of fair distributing items between two people.

37

Chapter 6

Visualization

6.1 Web Interface (Welcome Page)

Fig. 6.1: Awesome Welcome Page

The main color of the website is red and white, providing a natural interactive experience
and a cute Go language mascot, “Gopher”, to guide visitors to explore and experience the
fair allocation algorithm.

38

Fig. 6.2: Step into fair allocation through an interesting story

Visitors can experience fair allocation through a fun story that leads them into a scenario
that requires the interaction of the allocation algorithm (See Fig.6.2).

Fig. 6.3: Try the algorithm and save the friendship

After that, visitors can try out the algorithm in the playground and enter a scenario of fair
allocation. Eventually find the answer to their own question (See Fig. 6.3 and Fig. 6.4).

39

Fig. 6.4: Find your own answer and try more algorithms

6.2 Web Interface (Find Your Own Solution)

Fig. 6.5: Try more algorithms following the handy guide

Visitors can try out algorithms previously implemented in the FindSolution page and ap-
ply them to their own real-world fair-goods allocation problems. Visitors follow with
the Gopher’s guide to complete the form step by step, and build an allocation problem
gradually, eventually finding their own reference for the answer (See Fig.6.6).

40

(a) Number of goods and names (b) Visitor names and preferences

(c) Choose a algorithm want to try (d) Got a fair allocation

Fig. 6.6: Find a allocation step by step

Visitors can really use their own real allocation cases to achieve different levels of fairness
using different algorithms. For example, using the Round Robin algorithm, each partici-
pant has the same chance to pursue the item they want most in each round of allocation,
and this outcome is only related to their own evaluation of the item and the allocation
mechanism (in this case, the order of allocation). Using the Divide and Choose algo-
rithm, a more global fairness in value can be found. With the Adjusted Winner algorithm,
the fairness is obtained through some mathematical calculations. It is important to note
that the Save the World algorithm is the same as the EF1 algorithm, keeping the number
of items allocated as balanced as possible.

6.3 Website Robustness and User-friendliness

The Fairallol balance of aesthetics and functionality, while taking into account robustness
and enhancing user experience.

41

6.3.1 Friendly Reminders

When visitors input values that are not expected or are deliberately disruptive, friendly
reminders are displayed to give the necessary hints or to prevent the next step from being
taken.

(a) Input illegal or all points are not used up

(b) Network errors or back-end crashes (c) Everything is going well

Fig. 6.7: Hints at the Playground

More hints example at Find Solution page see Appendix C

6.3.2 Website Robustness

The previously mentioned four algorithms are implemented as back-end services for visi-
tors to explore and experience. However, it is required that all item names to be allocated
and participant names are unique, and the front-end application ensures this for robust-
ness.

42

(a) The same item name is input (b) Codes the duplicate names automatically

Fig. 6.8: The front-end program ensures that item names are not duplicated

More website robustness example at Find Solution Page see Appendix D

6.3.3 User Experience Enhancement

Recording the user’s preferences for each item to be allocated is important, and is the most
demanding part of the entire interaction. Random options are provided in the playground
to allow visitors to experience the algorithm more easily. In the FindSolution section, an
adjustment option is provided to scale the points according to the user’s existing input to
meet the algorithm requirements.

Fig. 6.9: Random option for visitors to experience the algorithm

43

Fig. 6.10: Adjustment option makes input to satisfy requirements on existing scale

6.4 Terminal Application

The terminal applet is suitable for users who are looking for high efficiency, and who are
in favor of GRAB-AND-GO.

(a) Start (b) Submit

(c) Allocate (d) Finish

Fig. 6.11: Get an allocation in under a minute

44

Chapter 7

Limitations and Future Work

7.1 Limitations

7.1.1 Algorithm

A key challenge for fair allocation is to address the different preferences and evaluations
of individuals, as an allocation that is perceived as fair by one person may not be perceived
as fair by another. Reaching consensus on what fairness means is also difficult because
concepts like envy-freeness, proportionality, and efficiency may have different priorities.
In addition, the complexity of finding the ideal solution increases with the number of par-
ticipants and items involved, making it computationally challenging to achieve fairness in
large-scale scenarios.

Althogh, the topic of this FYP only involves exploring the problem of fair allocation
of items between two participants and the methods for a wide range of applications, but
there are still some limitations.

• Compromise between implementation and algorithmic ideas

There are multiple ways to implement algorithms. For example, Round Robin (RR)
and Divide And Choose (DC) can be implemented very easily and efficiently be-
cause of the straightforwardness and practicality of the idea.

However, algorithms like Adjusted Winner (AW) and Envy-freeness up to 1 (EF1)
are more difficult to implement and do not have a common standard. In this imple-
mentation of FYP, the AW algorithm does not guarantee non-deprivability, which
means that the item assigned to a participant may be deprived and participate in the
next round of allocation, which is in violation of the original proposed Adjusted
Winner.

45

As for the EF1 algorithm, since the algorithm attempts to guarantee PO by assign-
ing the highest item preference to the participants at the beginning, this algorithm
can be regarded as a greedy algorithm, which attempts to achieve the optimal solu-
tion but often falls short of the goal, i.e., PO, by local optimal solutions. Although it
maintains some kind of fairness, a balanced number of items to be allocated, how-
ever, there are drawbacks in certain scenarios, refer to Tie input pattern in Shallow
Test.

• Differences between algorithmically perfect data and realistic data

Although realistic data are absent, it is possible to generate test sets and test the
algorithm in a combinatorial way (possibly obtaining more coverage). However,
because of the large number, and the absence of a realistic expected result against
which to compare, the efficiency of the algorithm and the utility obtained can only
be evaluated from the criterion mentioned in Section.4.2.1. But such a test lacks
significance of the allocation to real-life scenarios.

7.1.2 User Interface

Although the current website has a good feel and look, with some robustness and a good
interactive nature, there are still some limitations.

• The website has some lack of control over the box model, when dynamically chang-
ing prompts, sometimes the text will make the box bigger, causing some minor
inconsistencies.

• Although the interface is responsive, this means that the website can be displayed
properly on both PC and mobile. Likewise, the interface can sometimes look a bit
“crowded” due to the lack of fine-grained component control.

• The site is still in the local testing phase, and is still one step away from being
launched.

7.1.3 Engineering Management

In fact, it is quite thrilling to be an explorer in the field to do some experimentation. The
problem of fair allocation is a niche, but relevant issue for everyone, something that has
been studied since the Second World War, and has recently still been the subject of Nobel
Prize winning research. Mainstream algorithm development is often done in Python pro-
gramming languages, such as Fairpy. Many efficiency-conscious algorithms use C/C++
for more low-level control. However, Go, the most promising new programming lan-
guage, has been less explored in this area. Fairalol, as an explorer of such attempts,

46

benefits from the inherent advantages of the Go language, and is about three times faster
than Python implementation for the same behavior. However, Fairalol still has a major
engineering drawback. For example.

• Only a simple project structure is managed. It is better to keep it simple when the
initial project is not large enough, but it may create a potential problem for code
bloat later.

• Absence of logical abstraction. The ideal approach would be to define an inter-
face, implement the interface, and have the structure have its own methods, thus
ensuring that the structure is bound by certain constraints to ensure that the logic
is maintained. The current practice is for structures to call methods directly, which
provides the convenience of pre-testing and modification, but is by no means a good
specification.

• Code redundancy. The current test code has a lot of redundant code that is not
properly extracted.

• Starter documentation. Beginner-friendly documentation and contribution guide-
lines should be made available for communication, and to motivate contributors.

7.2 Future Work

This FYP trip has been an exciting journey of exploration, not only in the field of fair
allocation, a crucial issue in economics, game theory, and sociology, but also in the field
of software development.

Regarding the algorithm, the basic principles and criteria for fair allocation have been
somewhat justified. After that, a more global exploration of an allocation using linearly
restricted computational methods can be explored, rather than greedy mathematical meth-
ods and mechanisms to achieve the goal.

Through this software development process, the front-end has been designed and im-
plemented, and the back-end web service has been built from scratch, with the front- and
back-end integration successfully completed. However, there is still room for improve-
ment in refining the website interface, and the final step of deploying the website needs
to be completed. Additionally, with the visitors’ consent or proper desensitization of the
data, relevant real-world data can be recorded and visitors can leave feedback on the allo-
cation process. This feedback can then be incorporated into the algorithm to optimize the
iterative allocation process.

47

This FYP project is not only an experiment and an innovation of the author, but also a
pioneering and complete exploration process that can be referred to and improved by oth-
ers. The source code of Fairallol’s website is there, so readers can pull the code, build and
access their own fairness algorithms to experiment, after the author refactored the code
modularly and wrote detailed documentation.

The Fairallol backend code serves as an early explorer of fairness algorithms in Go, at-
tempting to provide opportunities for like-minded peers to learn and improve, and the
author will actively develop and improve the code and encourage potential contributors
to contribute to the open source community and to the ongoing discussion of fairness
algorithms.

48

Chapter 8

Conclusion

In this FYP, the author explores the problem of fair allocation of indivisible items in which
two participants are involved. The four most widely used and effective methods in this set-
ting, namely Divide And Choose (DC), Adjusted Winner (AW), Round Robin (RR), and
Envy-freeness up to one (EF1), are explored and implemented as services in a web back-
end written in Go for a front-end application written in the Vue framework. Through this
FYP, the student experienced a complete journey of front-end web design and develop-
ment, back-end deployment, and front- and back-end interaction. The four fair allocation
algorithms explored were transferred to a modern, easy-to-use, robust, heuristic web in-
terface, in addition to another terminal interface that could be accessed. But there are still
some limitations here, as it is possible to collect real data on interface visitors and their
comments under suitable conditions to feed the algorithm to optimize algorithms itera-
tively to achieve more realistic allocations. In addition, by using computational methods
such as linear restrictions, a more global consideration of fair allocation can be carried out
in later experiments to achieve realistic fairness (although the problem may be NP-hard,
under certain settings, polynomial-level approximations can be found), instead of using
mathematical methods and mechanisms to achieve the goal.

Thanks to FYP for providing the author with this valuable opportunity to explore the
world and exercise his abilities. Fair allocation is a niche area of research and has a high
threshold. It is almost impossible to find a clear tutorial on the web to start from scratch.
This situation, however, motivates the author to read the literature, to study the mathe-
matical expressions and the intrinsic meaning of the algorithms and to develop the ability
to read pseudo-code and try to implement them. This provided a solid foundation for
possible future research paths. In addition, this trip was really the fulfillment of a 4-year
dream. To really build a front-end and back-end for research, and a complete interface
open to the public, which is also relevant to my career plan. Thanks for the supervisor’s

49

constant guidance and encouragement, the author so that have been able to do this.

50

Reference

[1] H. P. Young, Equity: in theory and practice. Princeton University Press, 1995.

[2] D. M. Kilgour and R. Vetschera, “Two-player fair division of indivisible items:
Comparison of algorithms,” European Journal of Operational Research, vol. 271,
no. 2, pp. 620–631, 2018. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0377221718304764

[3] N. Bansal and M. Sviridenko, “The santa claus problem,” in Proceedings of the
thirty-eighth annual ACM symposium on Theory of computing, 2006, pp. 31–40.

[4] S. J. Brams and A. D. Taylor, “Fair division: From cake cutting to dispute resolution
(j. oppenheimer).” Public Choice, vol. 93, no. 3/4, p. 514.

[5] S. J. Brams, D. M. Kilgour, and C. Klamler, “The undercut procedure: an algorithm
for the envy-free division of indivisible items,” Social Choice and Welfare, vol. 39,
no. 2-3, pp. 615–631, 2012.

[6] S. J. Brams, P. H. Edelman, and P. C. Fishburn, “Fair division of indivisible items,”
Theory and Decision, vol. 55, pp. 147–180, 2003.

[7] S. J. Brams, D. M. Kilgour, and C. Klamler, “How to divide things fairly,” Mathe-
matics Magazine, vol. 88, no. 5, pp. 338–348, 2015.

[8] K. Pruhs and G. J. Woeginger, “Divorcing made easy.” in FUN. Springer, 2012,
pp. 305–314.

[9] D. Kurokawa, A. D. Procaccia, and J. Wang, “Fair enough: Guaranteeing approxi-
mate maximin shares.” Journal of the ACM, vol. 65, no. 2, pp. 1 – 27.

[10] S. Bouveret and M. Lemaı̂tre, “Characterizing conflicts in fair division of indivisi-
ble goods using a scale of criteria.” Autonomous Agents and Multi-Agent Systems,
vol. 30, no. 2, pp. 259 – 290.

51

[11] I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and J. Wang,
“The unreasonable fairness of maximum nash welfare.” ACM Transactions on Eco-
nomics and Computation (TEAC), vol. 7, no. 3, pp. 1 – 32.

[12] H. Aziz, B. Li, H. Moulin, and X. Wu, “Algorithmic fair allocation of indivisible
items: A survey and new questions,” SIGecom Exch., vol. 20, no. 1, p. 24–40, nov
2022. [Online]. Available: https://doi.org/10.1145/3572885.3572887

[13] B. R. Chaudhury, T. Kavitha, K. Mehlhorn, and A. Sgouritsa, “A little charity guar-
antees almost envy-freeness.”

[14] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi, “On approximately fair allo-
cations of indivisible goods.” New York, NY, USA: Association for Computing
Machinery, 2004.

[15] E. Budish, “The combinatorial assignment problem: Approximate competitive equi-
librium from equal incomes.” Journal of Political Economy, vol. 119, no. 6, pp. 1061
– 1103.

[16] B. Plaut and T. Roughgarden, “Almost envy-freeness with general valuations,” SIAM
Journal on Discrete Mathematics, vol. 34, no. 2, pp. 1039–1068, 2020.

[17] S. J. Brams and A. D. Taylor, The win–win solution: Guaranteeing fair shares to
everybody. WW Norton & Company, 2000.

[18] X. Bei, X. Lu, P. Manurangsi, and W. Suksompong, “The price of fairness for indi-
visible goods,” Theory of Computing Systems, vol. 65, pp. 1069–1093, 2021.

[19] H. Aziz, H. Moulin, and F. Sandomirskiy, “A polynomial-time algorithm for com-
puting a pareto optimal and almost proportional allocation,” Operations Research
Letters, vol. 48, no. 5, pp. 573–578, 2020.

[20] G. Amanatidis, G. Birmpas, and E. Markakis, “On truthful mechanisms for maximin
share allocations,” arXiv preprint arXiv:1605.04026, 2016.

[21] H. Aziz, B. Li, and X. Wu, “Approximate and strategyproof maximin share allo-
cation of chores with ordinal preferences,” Mathematical Programming, pp. 1–27,
2022.

[22] H. Varian, “Equity, envy and efficiency,” J. Econ. Theor., vol. 9, p. 63–91, 1974.

[23] L. E. Dubins and E. H. Spanier, “How to cut a cake fairly.” American Mathematical
Monthly, vol. 68, p. 1.

52

[24] A. Procaccia and J. Wang, “A lower bound for equitable cake cutting.” in EC 2017 -
Proceedings of the 2017 ACM Conference on Economics and Computation, no. EC
2017 - Proceedings of the 2017 ACM Conference on Economics and Computation,
pp. 479–496 – 496.

53

Appendix A

Shallow Test Evidences

(a) Shallow Test for DC (b) Shallow Test for AW

(c) Shallow Test for RR (d) Shallow Test for SW

Fig. A.1: Shallow Test

54

Fig. A.2: Shallow test for Fairpy (The Same behavior as Fairallol)

55

Appendix B

Overall Analysis

(a) Preference Pattern VS. Average Scores Diff (N = 4)

(b) Preference Pattern VS. Average Scores Diff (N = 6)

Fig. B.1: Overall Analysis - Pattern VS. Average Scores Diff

56

(a) Preference Pattern VS. Time Elapsed (N = 4)

(b) Preference Pattern VS. Time Elapsed (N = 6)

Fig. B.2: Overall Analysis - Pattern VS. Time Elapsed

57

Appendix C

Hints at Find Solution Page

(a) Input illegal or all points are not

used up

(b) Network errors or back-end crashes

(c) Everything is going well

Fig. C.1: Hints at FindSolution1

58

(a) Network errors or back-end crashes

(b) Everything is going well

Fig. C.2: Hints at FindSolution2

59

Appendix D

Website Robustness Example

Fig. D.1: Front-end application intercepts duplicate names

60

